首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   0篇
化学   15篇
物理学   2篇
  2021年   1篇
  2012年   2篇
  2011年   1篇
  2009年   2篇
  2008年   4篇
  2007年   3篇
  2005年   1篇
  1998年   1篇
  1985年   1篇
  1978年   1篇
排序方式: 共有17条查询结果,搜索用时 15 毫秒
1.
A new headspace solid-phase microextraction (HSSPME) procedure carried out under vacuum conditions is proposed here where sample volumes commonly used in HSSPME (9 mL) were introduced into pre-evacuated commercially available large sampling chambers (1000 mL) prior to HSSPME sampling. The proposed procedure ensured reproducible conditions for HSSPME and excluded the possibility of analyte losses. A theoretical model was formulated demonstrating for the first time the pressure dependence of HSSPME sampling procedure under non equilibrium conditions. Although reduced pressure conditions during HSSPME sampling are not expected to increase the amount of analytes extracted at equilibrium, they greatly increase extraction rates compared to HSSPME under atmospheric pressure due to the enhancement of evaporation rates in the presence of an air-evacuated headspace. The effect is larger for semivolatiles whose evaporation rates are controlled by mass transfer resistance in the thin gas film adjacent to the sample/headspace interface. Parameters that affect HSSPME extraction were investigated under both vacuum and atmospheric conditions and the experimental data obtained were used to discuss and verify the theory. The use of an excessively large headspace volume was also considered. The applicability of Vac-HSSPME was assessed using chlorophenols as model compounds yielding linearities better than 0.9915 and detection limits in the low-ppt level. The repeatability was found to vary from 3.1 to 8.6%.  相似文献   
2.
The sonochemical degradation of 5 μg l−1 triclosan, a priority micro-pollutant, in various environmental samples (seawater, urban runoff and influent domestic wastewater) as well as in model solutions (pure and saline water) was investigated. Experiments were conducted with a horn-type sonicator operating at 80 kHz frequency and a nominal applied power of 135 W, while solid-phase microextraction coupled with gas chromatography–electron capture detector (SPME/GC–ECD) was employed to monitor triclosan degradation. The latter followed pseudo-first order kinetics with the rate constant being (min−1): 0.2284 for seawater > 0.1051 for 3.5% NaCl in deionised water > 0.0597 for centrifuged urban runoff  0.0523 for untreated urban runoff > 0.0272 for deionised water > 0.0063 for wastewater influent. SPME/GC–ECD and SPME coupled with gas chromatography–mass spectrometry (SPME/GC–MS) were also used to check for the formation of chlorinated and other toxic by-products; at the conditions in question, the presence of such compounds was not confirmed.  相似文献   
3.
Here, we report for the first time a laboratory investigation into the photochemical degradation of 2,2′,4,4′,6-pentabromodiphenyl ether (BDE-100) in ice solid samples using an artificial UV light source. Solid phase microextraction (SPME) was used as a sensitive extraction technique for monitoring trace amounts of the hydrophobic pollutant and its photoproducts. The results showed that ice photolysis kinetics for BDE-100 is similar to the one observed in the aqueous counterpart. The eight photoproducts identified consisted of brominated diphenyl ethers with lower bromine content and polybrominated dibenzofurans, suggesting two important photodegradation pathways for BDE-100 in ice solid samples: (i) stepwise reductive debromination and (ii) intramolecular elimination of HBr. Similarities in photochemical product arrays observed in the ice and water photolysis of BDE-100 were attributed to a similar mechanism for photochemical decomposition for both phases. Possible involvement of the water molecules in the reactions has been excluded by performing photolysis in D2O ice solid and water samples. Taking advantage of the high preconcentration factor obtained with SPME at low temperatures, a SPME fiber cooled with liquid carbon dioxide down to 0 °C was used as a photoreaction support for BDE-100 allowing the identification of a greater number of photoproducts.  相似文献   
4.
The Mass Spectral retro-Diels-Alder-Reaction: 1,2,3,4-Tetrahydroisoquinoline and 1,2,3,4-Tetrahydronaphthaline (Tetraline) The retro-Diels-Alder reaction of 1,2,3,4-tetrahydroisoquinoline and of its N-acetyl derivative was confirmed on the basis of labelled derivatives (Scheme 2). Furthermore, the loss of ethylene was investigated with the 1,2,3,4-tetrahydronaphthalene- and 1,2,3,4-tetrahydronaphthalen-1-one-derivatives given in Schemes 4, 5 and 6. In the case of the 1,2,3,4-tetrahydronaphthalen-1-one-derivatives ethylene is lost via a retro-Diels-Alder reaction. The loss of ethylene from 1,2,3,4-tetrahydronaphthalene ( 1 ) and from its derivatives is a rather complex reaction (Scheme 8): 1/3 of ethylene is split off 1 + via a formal retro-Diels-Alder reaction, 2/3 are lost after a specific rearrangement. The ratio of these two fragmentation pathways depends very much on the substituents placed at the aliphatic and the aromatic rings, compare e.g. Table 4.  相似文献   
5.
Exposing a microlitre organic solvent drop to the headspace of an aqueous sample contaminated with ten chlorobenzene compounds proved to be an excellent preconcentration method for headspace analysis by gas chromatography-mass spectrometry (GC-MS). The proposed headspace single-drop microextraction (SDME) method was initially optimised and the optimum experimental conditions found were: 2.5 microl toluene microdrop exposed for 5 min to the headspace of a 10 ml aqueous sample containing 30% (w/v) NaCl placed in 15 ml vial and stirred at 1000 rpm. The calculated calibration curves gave a high level of linearity for all target analytes with correlation coefficients ranging between 0.9901 and 0.9971, except for hexachlorobenzene where the correlation coefficient was found to be 0.9886. The repeatability of the proposed method, expressed as relative standard deviation varied between 2.1 and 13.2% (n = 5). The limits of detection ranged between 0.003 and 0.031 microg/l using GC-MS with selective ion monitoring. Analysis of spiked tap and well water samples revealed that matrix had little effect on extraction. A comparative study was performed between the proposed method, headspace solid-phase microextraction (SPME), solid-phase extraction (SPE) and EPA method 8121. Overall, headspace SDME proved to be a rapid, simple and sensitive technique for the analysis of chlorobenzenes in water samples, representing an excellent alternative to traditional and other, recently introduced, methods.  相似文献   
6.
The templating effect of the tetrafluoroborate ion leads to assembly of four CoII ions and six bridging ligands around this anion to give a tetrahedral complex with a bridging ligand along each edge and the anion trapped in the central cavity (shown below). Surprisingly under identical conditions but with NiII a simpler dinuclear complex forms.  相似文献   
7.
Fast screening of trace amounts of the perfluorooctane sulfonate anion (PFOS) in water samples was performed following a simple, fast and efficient sample preparation procedure based on vortex-assisted liquid-liquid microextraction (VALLME) prior to liquid chromatography-mass spectrometry. VALLME initially uses vortex agitation, a mild emulsification procedure to disperse microvolumes of octanol, a low density extractant solvent, in the aqueous sample. Microextraction under equilibrium conditions is thus achieved within few minutes. Subsequently, centrifugation separates the two phases and restores the initial microdrop shape of the octanol acceptor phase, which can be collected and used for liquid chromatography-single quadrupole mass spectrometry analysis. Several experimental parameters were controlled and the optimum conditions found were: 50 μL of octanol as the extractant phase; 20 mL aqueous donor samples (pH=2); a 2 min vortex extraction time with the vortex agitator set at a 2500 rpm rotational speed; no ionic strength adjustment. Centrifugation for 2 min at 3500 rpm yielded separation of the two phases throughout this study. Enhanced extraction efficiencies were observed at low pH which was likely due to enhanced electrostatic interaction between the negatively PFOS molecules and the positively charged octanol/water interface. The effect of pH was reduced in the presence of sodium chloride, likely due to electrical double layer compression. The linear response range for PFOS was from 5 to 500 ng L(-1) (coefficient of determination, r(2), 0.997) and the relative standard deviation for aqueous solutions containing 10 and 500 ng L(-1) PFOS were 7.4% and 6.5%, respectively. The limit of detection was 1.6 ng L(-1) with an enrichment factor of approximately 250. Analysis of spiked tap, river and well water samples revealed that matrix did not affect extraction.  相似文献   
8.
A new, fast and simple cleanup procedure, based on hollow-fibre liquid-phase microextraction (HF-LPME) is described here, used for the determination of 13 polycyclic aromatic hydrocarbons (PAHs) in complex pine needle samples. Initially, pine needle samples were sonicated in a 20 mL aqueous solution having a 20% (v:v) acetone content and 5 mL of the sonicated liquid extract was then used for the HF-LPME cleanup step. Different experimental parameters (namely: type of organic solvent used as acceptor phase, effect and type of co-solvent, salt addition, sample agitation and sampling time) were controlled and optimized based on the response of GC-MS instrument under the SIM mode. Under the optimized experimental conditions found the typical chromatograms obtained revealed that despite the very complex matrix of pine needles the HF-LPME cleanup step greatly reduced if not eliminated the presence of interferents, resulting in chromatograms which contained very cleanly separated and readily evaluable PAH peaks. In addition, the proposed method was found to be linear in the concentration 10-2000 ng g−1 for most target analytes and the limits of detection for a S/N = 3 ranged between 0.01 and 0.95 ng g−1 (dry weight). Furthermore, the repeatability and reproducibility were also found good. Finally, the proposed method was applied for the analysis of real pine needle samples taken for different parts of the island of Crete.  相似文献   
9.
Headspace single drop microextraction coupled to gas chromatography-mass spectrometry yielded a simple, fast and virtually solventless analytical protocol used for the headspace analysis of aqueous samples contaminated with methylcyclopentadienyl-manganese tricarbonyl (MMT). Initially, several experimental parameters were controlled and optimized and the optimum conditions found were 2.5 μl octane microdrop exposed for 20 min to the headspace of a 10 ml aqueous sample (15 ml vial) containing 20% (w/v) NaCl and stirred at 1250 rpm. The calculated calibration curves gave a high level of linearity for MMT with correlation coefficients >0.9995 after conducting a 3-day study. The limit of detection was calculated to be 0.21 μg l−1. The proposed method achieved an enrichment factor of the order of 2100 and a 53% recovery after extracting the spiked aqueous solution for 20 min under the optimized experimental conditions. The repeatability and intra-day reproducibility of the proposed method, expressed as relative standard deviation were 8.4 and 6.4%, respectively. Finally, analysis of spiked tap and wastewater samples revealed that matrix had little effect upon extraction.  相似文献   
10.
Hexachlorobenzene (HCB), a model volatile compound, was exposed to UV irradiation (16 W, 254 nm) after being sorbed in an internally cooled or low temperature solid-phase microextraction (LT-SPME) fibre. Photolysis took place directly on the polydimethylsiloxane coating of the LT-SPME fibre, yielding an “in situ” generation of photoproducts. Maintaining the temperature of the cold fibre at 0 °C eliminated, for the first time, problems of analyte losses due to volatilisation, inherent to the conventional room temperature photo-SPME studies. During the present studies, nearly complete photoremoval of HCB could be achieved within 20 min of irradiation. Photoreduction through photodechlorination was shown to be the main decay pathway in which lesser chlorinated congeners were sequentially formed as intermediates. Accordingly, initial generation of pentachlorobenzene was followed in order from 1,2,3,5-tetrachlorobenzene, 1,2,4,5-tetrachlorobenzene and 1,3,5-trichlorobenzene. The present findings were in agreement with previously reported results. Overall, the use of the LT-SPME device as a photoreaction support not only eliminated analyte losses but also greatly facilitated photochemical investigations of volatile compounds in general.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号