首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   401篇
  免费   15篇
  国内免费   1篇
化学   322篇
晶体学   6篇
力学   8篇
数学   21篇
物理学   60篇
  2023年   2篇
  2022年   6篇
  2021年   11篇
  2020年   12篇
  2019年   5篇
  2018年   3篇
  2017年   6篇
  2016年   14篇
  2015年   9篇
  2014年   8篇
  2013年   25篇
  2012年   25篇
  2011年   33篇
  2010年   14篇
  2009年   19篇
  2008年   24篇
  2007年   34篇
  2006年   15篇
  2005年   24篇
  2004年   24篇
  2003年   11篇
  2002年   8篇
  2001年   5篇
  2000年   4篇
  1999年   4篇
  1998年   9篇
  1997年   6篇
  1996年   2篇
  1994年   3篇
  1992年   3篇
  1989年   1篇
  1988年   1篇
  1987年   3篇
  1986年   1篇
  1985年   1篇
  1984年   3篇
  1983年   3篇
  1982年   3篇
  1981年   3篇
  1980年   2篇
  1979年   1篇
  1978年   3篇
  1977年   1篇
  1976年   3篇
  1975年   7篇
  1974年   3篇
  1973年   4篇
  1970年   1篇
  1958年   1篇
  1954年   1篇
排序方式: 共有417条查询结果,搜索用时 31 毫秒
1.
An overview is presented of the analytical approaches developed by our research group over the last ten years for analysis of alternative fuel, both biomass and fossil. The alternative fuels are analyzed successively by PLC-8 (preparative liquid chromatography–group-type) fractionation and high resolution gas chromatography. Some of the possibilities for fractionation and characterization of alternative fuels are herein exemplified with sugar cane bagasse pyrolysis products.  相似文献   
2.
3.
Mutant p53 tends to form aggregates with amyloid properties, especially amyloid oligomers inside the nucleus, which are believed to cause oncogenic gain-of-function (GoF). The mechanism of the formation of the aggregates in the nucleus remains uncertain. The present study demonstrated that the DNA-binding domain of p53 (p53C) underwent phase separation (PS) on the pathway to aggregation under various conditions. p53C phase separated in the presence of the crowding agent polyethylene glycol (PEG). Similarly, mutant p53C (M237I and R249S) underwent PS; however, the process evolved to a solid-like phase transition faster than that in the case of wild-type p53C. The data obtained by microscopy of live cells indicated that transfection of mutant full-length p53 into the cells tended to result in PS and phase transition (PT) in the nuclear compartments, which are likely the cause of the GoF effects. Fluorescence recovery after photobleaching (FRAP) experiments revealed liquid characteristics of the condensates in the nucleus. Mutant p53 tended to undergo gel- and solid-like phase transitions in the nucleus and in nuclear bodies demonstrated by slow and incomplete recovery of fluorescence after photobleaching. Polyanions, such as heparin and RNA, were able to modulate PS and PT in vitro. Heparin apparently stabilized the condensates in a gel-like state, and RNA apparently induced a solid-like state of the protein even in the absence of PEG. Conditions that destabilize p53C into a molten globule conformation also produced liquid droplets in the absence of crowding. The disordered transactivation domain (TAD) modulated both phase separation and amyloid aggregation. In summary, our data provide mechanistic insight into the formation of p53 condensates and conditions that may result in the formation of aggregated structures, such as mutant amyloid oligomers, in cancer. The pathway of mutant p53 from liquid droplets to gel-like and solid-like (amyloid) species may be a suitable target for anticancer therapy.

Mutant p53 tends to form aggregates with amyloid properties, especially amyloid oligomers inside the nucleus, which are believed to cause oncogenic gain-of-function (GoF).  相似文献   
4.
Topical application of the isoflavone equol immediately following solar-simulated UV (SSUV) radiation exposure has previously been demonstrated to have significant photoprotective effects. Equol reduced both the inflammatory edema and the systemic suppression of the contact hypersensitivity reaction in hairless mice. Furthermore, daily topical equol application immediately following irradiation during a 10-week chronic SSUV exposure regime also reduced photocarcinogenesis severity in the mouse. This study examines the potential for topical equol to prevent photoaging in response to chronic SSUV irradiation for up to 30 weeks. We did not find consistent expression of the characteristic markers of photoaging until 30 weeks, although moderate epidermal hyperplasia and a transient increase in dermal mast cell numbers were evident after 1 week. Daily application of 10 muM equol lotion significantly reduced these early changes. However after 30 weeks of SSUV exposure, photoaging was well developed, as shown histologically by markedly increased epidermal hyperplasia, increased dermal mast cell number, pronounced focal elastotic deposits, degraded dermal collagen and deposition of glycosaminoglycans in the lower dermis. Topical equol treatment protected significantly from each of these impairments, as demonstrated histologically and quantitatively. Additionally, equol was found to have strong antioxidant action against acute UVA (320-400 nm)-induced lipid peroxidation of mouse skin, this property accounting for its antiphotoaging mechanism. The evidence for equol's antiphotoaging activity, taken together with its anti-inflammatory, immunoprotective and anticarcinogenic efficacy against SSUV irradiation in the mouse, suggests that equol could be developed as a helpful topical photoprotective agent for daily use by humans.  相似文献   
5.
Dudley Williams and his colleagues discuss how ligands can gain binding energy to their receptors, and substrate transition states to their enzymes, by tightening the protein structures, with a decrease in their dynamic behaviour.  相似文献   
6.
Self-assembly of functionalized nanoscale building blocks is a promising strategy for "bottom-up" materials design. Recent experiments have demonstrated that the self-assembly of polyhedral oligomeric silsesquioxane (POSS) "nanocubes" functionalized with organic tethers can be utilized to synthesize novel materials with highly ordered, complex nanostructures. We have performed molecular simulations for a simplified model of monotethered POSS nanocubes to investigate systematically how the parameters that control the assembly process and the resulting equilibrium structures, including concentration, temperature, tether lengths, and solvent conditions, can be manipulated to achieve useful structures via self-assembly. We report conventional lamellar and cylindrical structures that are typically found in block copolymer and surfactant systems, including a thermotropic order-order transition, but with interesting stabilization of the lamellar phase caused by the bulkiness and cubic geometry of the POSS nanocubes.  相似文献   
7.
Morphological and chemical characteristics were determined for airborne tungsten particles in Fallon, Nevada, a town that is distinguishable environmentally by elevated airborne tungsten and cobalt. From samples of airborne dust collected previously at six different places in Fallon, tungsten-rich dust particles were isolated and analyzed with automated electron microprobe and wavelength-dispersive spectrometry. Representative W particles were further analyzed using transmission electron microscopy. Morphologically, Fallon W particles are angular and small, with minimum and maximum sizes of < or = 1 microm and 5.9 microm in diameter, respectively. The number and size of tungsten-rich particles decrease in Fallon with distance from a hard-metal facility located near the center of town. Chemically, Fallon airborne W particles include mixtures of tungsten with cobalt plus other metals such as chromium, iron, and copper. No W-rich particles were identifiable as CaWO4 (scheelite) or MnWO4 (huebnerite). From d-spacings, Fallon particles are most consistent with identification as tungsten carbide. Based on these multiple lines of evidence, airborne W particles in Fallon are anthropogenic in origin, not natural. The hard-metal facility in Fallon processes finely powdered W and W-Co, and further investigation using tracer particles is recommended to definitively identify the source of Fallon's airborne tungsten.  相似文献   
8.
The gas phase structures of phenyl alpha- and beta-d-xylopyranoside (alpha- and beta-pXyl) and their mono-hydrates have been investigated using a combination of resonant two-photon ionization (R2PI), ultra-violet hole-burning and resonant infrared ion dip spectroscopy, coupled with density functional theory (DFT) and ab initio computation. The hole-burning experiments indicate the population of a single conformer only, in each of the two anomers. Their experimental and calculated infrared spectra are both consistent with a conformational assignment corresponding to the computed global minimum configuration. All three OH groups are oriented towards the oxygen atom (O1) on the anomeric carbon atom to form an all trans(ttt) counter-clockwise chain of hydrogen bonds. The mono-hydrates, alpha- and beta-pXyl(H(2)O) each populate two distinct structures in the molecular beam environment, with the water molecule inserted between OH4 and OH3 or between OH3 and OH2 in alpha-pXyl(H2O), and between OH2 and O1 in either of two alternative orientations, in beta-pXyl(H2O). In all of the mono-hydrated xyloside complexes, the water molecule inserts into the weakest link of the sugar molecules' hydrogen-bonded chain of hydroxy groups, creating a single extended chain, strengthened by co-operativity. The all-trans configuration of the xylose moiety is retained and the mono-hydrate structures correspond to those calculated to lie at the lowest relative energies.  相似文献   
9.
In this work, a hybrid silica/chitosan was synthesized and characterized by nitrogen elemental analysis and thermal analysis (TG, DTG, DTA, and DSC) and BET surface area. The hybrid was used in adsorption studies of two anionic dyes from aqueous solutions. A rise of temperature accelerates mass transfer of dyes into the hybrid. However, the maximum adsorption capacities reach similar values from 25 to 55 degrees C. The kinetic data were first evaluated in relation to the decrease of the time-related residual concentration of the dyes in solution, where the second-order model has presented the best fitting. The solid-phase interaction of dye data presents a rough fitting to the traditional first-order Lagergren kinetic model. However, a modified Avrami kinetic equation was successfully fitted to the kinetic quantities, where from five to seven kinetic regions were found. A pore-diffusion model has also demonstrated that the diffusion is the rate-controlling interaction mechanism. However, the experimental-calculated comparative values are the best way to evaluate a specific aqueous- or solid-phase kinetic model.  相似文献   
10.
(6S)-6-Fluoroshikimate has antimicrobial activity. The molecular basis of this effect had not been identified, but there was speculation that (6S)-6-fluoroshikimate is first converted in vivo into 2-fluorochorismate, which then could inhibit 4-amino-4-deoxychorismate synthase (ADCS). 2-Fluorochorismate was prepared from E-fluorophosphoenolpyruvate and erythose-4-phosphate by the sequential reactions of DAHP synthase, dehydroquinate synthase, dehydroquinase, shikimate dehydrogenase, EPSP synthase, and chorismate synthase. Inhibition studies on ADCS showed that it was inhibited rapidly and irreversibly by 2-fluorochorismate. Electrospray mass spectrometry of the inactivated enzyme showed an additional mass of 198 +/- 10 Da. A novel peptide of 1087.6 Da was identified in the HPLC trace for the tryptic digest of 2-fluorochorismate-inactivated ADCS. Sequencing of this peptide by MS/MS showed that the peptide corresponded to residues 272-279 with a modification of 206.1 Da on Lys-274. This observation is particularly exciting in the context of a recent proposal for the catalytic mechanism of ADCS.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号