首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
化学   3篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
The deformation of a thin liquid film in the presence of a surfactant monolayer, varying temperature distributions, and limited mass flux is considered. Use of lubrication theory yields a coupled pair of partial differential equations for the film height and surfactant surface monolayer concentration. The long-wave stability of the isothermal film is examined over a wide range of parameter values. It is shown that droplet patterns are obtained under certain thermal conditions for both an isothermal and nonisothermal underlying substrate. For the case of a localized thermal gradient initially imposed at the air-liquid interface, severe film thinning beneath the heat source was observed, which was not accompanied by droplet formation; pseudo steady states are observed in this case. In all situations the surfactant is found to rigidify the air-liquid interface, retarding thermally driven flow, while evaporation (condensation) acts to destabilize (stabilize) the film.  相似文献   
2.
We consider the flow of a thin liquid film coating an inclined plane in the presence of an insoluble surfactant. A fully non-linear two-dimensional system of governing equations is formulated using lubrication theory to describe the dynamics. Numerical simulations of this system highlight a fingering instability present at the main fluid front and elucidate the role of surfactant in the destabilizing mechanism. A full parametric study is undertaken which reveals the dependence of the fingering characteristics on system parameters. Numerical solutions at low angles of inclination are also obtained in order to illustrate the connection between gravitationally driven fingering and the instability induced by surfactant on a flat substrate. The similarities and differences between the destabilizing mechanisms in each case are discussed.  相似文献   
3.
We consider the flow of a thin liquid film coating an inclined plane in the presence of a soluble surfactant. A two-dimensional three-equation model is derived using lubrication theory in the rapid diffusion limit and then used to investigate the stability of the fluid height and the surfactant surface and bulk concentrations. We present solutions for an insoluble surfactant system, which are then contrasted with those obtained for a system containing a soluble surfactant; both transient growth and fully nonlinear two-dimensional simulation results are discussed. Our results indicate that the characteristics of the fingering phenomena which accompany the flow are altered by the effects of solubility. In particular, we find that these effects de-stabilise the system further over an intermediate range of surfactant solubility.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号