首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24篇
  免费   7篇
化学   21篇
物理学   10篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2016年   2篇
  2015年   3篇
  2014年   3篇
  2012年   2篇
  2011年   2篇
  2004年   1篇
  1998年   1篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1993年   2篇
  1992年   2篇
  1991年   1篇
  1989年   1篇
  1987年   1篇
排序方式: 共有31条查询结果,搜索用时 15 毫秒
1.
2.
3.
A series of 2,5‐bis(arylethynyl)rhodacyclopentadienes has been prepared by a rare example of regiospecific reductive coupling of 1,4‐(p‐R‐phenyl)‐1,3‐butadiynes (R?H, Me, OMe, SMe, NMe2, CF3, CO2Me, CN, NO2, ?C?C‐(p‐C6H4?NHex2), ?C?C?(p‐C6H4?CO2Oct)) at [RhX(PMe3)4] ( 1 ) (X=?C?C?SiMe3 ( a ), ?C?C‐(p‐C6H4?NMe2) ( b ), ?C?C?C?C?(p‐C6H4?NPh2) ( c ) or ?C?C?{p‐C6H4‐C?C?(p‐C6H4‐N(C6H13)2)} ( d ) or Me ( e )), giving the 2,5‐bis(arylethynyl) isomer exclusively. The rhodacyclopentadienes bearing a methyl ligand in the equatorial plane (compound 1 e ) have been converted into their chloro analogues by reaction with HCl etherate. The rhodacycles thus obtained are stable to air and moisture in the solid state and the acceptor‐substituted compounds are even stable to air and moisture in solution. The photophysical properties of the rhodacyclopentadienes are highly unusual in that they exhibit, exclusively, fluorescence between 500–800 nm from the S1 state, with quantum yields of Φ=0.01–0.18 and short lifetimes (τ=0.45–8.20 ns). The triplet state formation (ΦISC=0.57 for 2 a ) is exceptionally slow, occurring on the nanosecond timescale. This is unexpected, because the Rh atom should normally facilitate intersystem crossing within femto‐ to picoseconds, leading to phosphorescence from the T1 state. This work therefore highlights that in some transition‐metal complexes, the heavy atom can play a more subtle role in controlling the photophysical behavior than is commonly appreciated.  相似文献   
4.
Achieving highly efficient phosphorescence in purely organic luminophors at room temperature remains a major challenge due to slow intersystem crossing (ISC) rates in combination with effective non‐radiative processes in those systems. Most room temperature phosphorescent (RTP) organic materials have O‐ or N‐lone pairs leading to low lying (n, π*) and (π, π*) excited states which accelerate kisc through El‐Sayed's rule. Herein, we report the first persistent RTP with lifetimes up to 0.5 s from simple triarylboranes which have no lone pairs. RTP is only observed in the crystalline state and in highly doped PMMA films which are indicative of aggregation induced emission (AIE). Detailed crystal structure analysis suggested that intermolecular interactions are important for efficient RTP. Furthermore, photophysical studies of the isolated molecules in a frozen glass, in combination with DFT/MRCI calculations, show that (σ, B p)→(π, B p) transitions accelerate the ISC process. This work provides a new approach for the design of RTP materials without (n, π*) transitions.  相似文献   
5.
6.
The investigation of the mechanisms of mechanochromic luminescence is of fundamental importance for the development of materials for photonic sensors, data storage, and luminescence switches. The structural origin of this phenomenon in phosphorescent molecular systems is rarely known and thus the formulation of structure–property relationships remains challenging. Changes in the M–M interactions have been proposed as the main mechanism with d10 coinage metal compounds. Herein, we describe a new mechanism—a mechanically induced reversible formation of a cation–anion exciplex based on Cu–F interactions—that leads to highly efficient mechanochromic phosphorescence and unusual large emission shifts from UV‐blue to yellow for CuI complexes. The low‐energy luminescence is thermo‐ and vaporesponsive, thus allowing the generation of white light as well as for recovering the original UV‐blue emission.  相似文献   
7.
8.
Three compounds with phenyl (1), 4-tert-butylphenyl (2) and 4-N,N-diphenylaminophenyl (3) groups attached to bis(fluoromesityl)boryl ((FMes)2B) through B–C bonds have been prepared. The restricted rotation about the B–C bonds of boron-bonded aryl rings in solution has been studied by variable-temperature 19F NMR spectroscopy, and through-space F–F coupling has been observed for 3 at low temperature. Steric congestion inhibits binding of 1 by Lewis bases DABCO and tBu3P and the activation of H2 in their presence. Photophysical and electrochemical studies have been carried out on 2, 3, and an analogue of 3 containing a bis(mesityl)boryl ((Mes)2B) group, namely 4. Both 2 and 3 show bright emission in nonpolar solvents and in the solid-state, very strong electron-accepting ability as measured by cyclic voltammetry, and good air-stability. In addition, 2 displayed unusually long-lived emission (τ = 2.47 s) in 2-MeTHF at 77 K. The much stronger acceptor strength of (FMes)2B than (Mes)2B leads to significantly red-shifted emission in solution and the solid state, stronger emission solvatochromism, and significantly lower reduction potentials. Theoretical calculations confirm that 2 and 3 tend to form highly twisted excited states with good conjugation between one FMes group and the boron atom, which correlate well with their blue-shifted solid-state emissions and low k r values in solution.  相似文献   
9.
10.
Reactions of [Rh(κ2O,O‐acac)(PMe3)2] (acac=acetylacetonato) and α,ω‐bis(arylbutadiynyl)alkanes afford two isomeric types of MC4 metallacycles with very different photophysical properties. As a result of a [2+2] reductive coupling at Rh, 2,5‐bis(arylethynyl)rhodacyclopentadienes ( A ) are formed, which display intense fluorescence (Φ=0.07–0.54, τ=0.2–2.5 ns) despite the presence of the heavy metal atom. Rhodium biphenyl complexes ( B ), which show exceptionally long‐lived (hundreds of μs) phosphorescence (Φ=0.01–0.33) at room temperature in solution, have been isolated as a second isomer originating from an unusual [4+2] cycloaddition reaction and a subsequent β‐H‐shift. We attribute the different photophysical properties of isomers A and B to a higher excited state density and a less stabilized T1 state in the biphenyl complexes B , allowing for more efficient intersystem crossing S1→Tn and T1→S0. Control of the isomer distribution is achieved by modification of the bis‐ (diyne) linker length, providing a fundamentally new route to access photoactive metal biphenyl compounds.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号