首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
化学   5篇
数学   1篇
  2012年   2篇
  2010年   2篇
  2009年   1篇
  2005年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
The hydroxyl radical (OH*) is a highly reactive oxygen species that plays a salient role in aqueous solution. The influence of water molecules upon the mobility and reactivity of the OH* constitutes a crucial knowledge gap in our current understanding of many critical reactions that impact a broad range of scientific fields. Specifically, the relevant molecular mechanisms associated with OH* mobility and the possibility of diffusion in water via a H-transfer reaction remain open questions. Here we report insights into the local hydration and electronic structure of the OH* in aqueous solution from Car-Parrinello molecular dynamics and explore the mechanism of H-transfer between OH* and a water molecule. The relatively small free energy barrier observed (~4 kcal/mol) supports a conjecture that the H-transfer can be a very rapid process in water, in accord with very recent experimental results, and that this reaction can contribute significantly to OH* mobility in aqueous solution. Our findings reveal a novel H-transfer mechanism of hydrated OH*, resembling that of hydrated OH(-) and presenting hybrid characteristics of hydrogen-atom and electron-proton transfer processes, where local structural fluctuations play a pivotal role.  相似文献   
2.
3.
The coordination and bonding effects of equatorial ligands such as fluoride (F), chloride (Cl), cyanide (CN), isocyanide (NC), and carbonate (CO3−2) on uranyl dication (UO22+) has been studied using relativistic density functional theory. The ZORA Hamiltonian was applied for the inclusion of relativistic effects taking into account all the electrons for the optimization and the explicit inclusion of spin–orbit coupling effects. Geometry optimizations including the counterions and frequencies analysis were carried out with PW91 and PBE functional. Solvents effects were considered by using the conductor like screening model (COSMO) for water and acetonitrile. The Time-Dependent Density Functional Theory (TDDFT) was used to calculate the excitation energies with GGA SAOP functional and the electronic transitions were analyzed using double group irreducible representations. The theoretical results are in a good agreement with experimental IR, Raman and EXAFS spectra and previous theoretical results. New information about the effect of different (donor and acceptors) ligands on the bonding of uranyl ion and on the electronic transitions involved in these complexes is provided with a possible impact on the understanding of the uranyl coordination chemistry.  相似文献   
4.
The interaction of two flavonoid species (resorcinolic and fluoroglucinolic) with the 20 essential amino acids was studied by the multiple minima hypersurface (MMH) procedures, through the AM1 and PM3 semiempirical methods. Remarkable thermodynamic data related to the properties of the molecular association of these compounds were obtained, which will be of great utility for future investigations concerning the interaction of flavonoids with proteins. These results are compared with experimental and classical force field results reported in the available literature, and new evidences and criteria are shown. The hydrophilic amino acids demonstrated high affinity in the interaction with flavonoid molecules; the complexes with lysine are especially extremely stable. An affinity order for the interaction of both flavonoid species with the essential amino acids is suggested. Our theoretical results are compared with experimental evidence on flavonoid interactions with proteins of biomedical interest. © 2005 Wiley Periodicals, Inc. Int J Quantum Chem, 2005  相似文献   
5.
The hydroxyl radical and its reactivity within ice environments are crucial to many important atmospheric reactions. The associated molecular mechanisms are largely unknown due to challenges posed by direct experimental measurements and computational studies of this transient species. Here we report insights into the local structure and behaviour of the hydroxyl radical in bulk ice through an extensive study utilizing Car-Parrinello molecular dynamics simulations. Interstitial and in-lattice hydroxyl radicals in hexagonal ice were investigated at primarily 190 K. Our findings, utilizing both HCTH/120 and BLYP functionals, show that OH* can exhibit greater mobility than other ice defects (the trapping energy estimated to be only 0.09 eV). We observe the formation of a two-center three-electron hemibond structure between the hydroxyl radical and an in-lattice water molecule; while controversial, such a structure in ice may be amenable to experimental detection due to its relative stability. Our results show that interstitial water molecules can strongly influence the mobility of the hydroxyl radical in bulk ice through the displacement of the radical to an interstitial location. We also demonstrate that the H-transfer reaction from an interstitial water to the radical is a rare event in ice. Together, these results predict that the radical can be a reactive species in bulk ice, as both interstitial and in-lattice OH* can be available for reactions with other species. These microscopic insights should contribute to our understanding of the reactivity of OH* in ice and its implications to atmospheric reactions.  相似文献   
6.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号