首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   129篇
  免费   3篇
化学   111篇
数学   2篇
物理学   19篇
  2022年   2篇
  2021年   3篇
  2020年   6篇
  2019年   3篇
  2017年   2篇
  2015年   5篇
  2014年   2篇
  2013年   2篇
  2012年   3篇
  2011年   15篇
  2010年   2篇
  2009年   1篇
  2008年   9篇
  2007年   5篇
  2006年   11篇
  2005年   13篇
  2004年   10篇
  2003年   5篇
  2002年   4篇
  2000年   2篇
  1999年   2篇
  1998年   3篇
  1997年   2篇
  1996年   1篇
  1995年   2篇
  1994年   2篇
  1993年   2篇
  1985年   2篇
  1984年   4篇
  1982年   1篇
  1979年   1篇
  1974年   1篇
  1972年   2篇
  1969年   2篇
排序方式: 共有132条查询结果,搜索用时 203 毫秒
1.
Summary Laser ablation inductively coupled plasma-source mass spectrometry has been used to determine thirty elements (Na, Mg, Al, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, As, Rb, Sb, Cs, Ba, La, Ce, Nd, Sm, Eu, Dy, Ho, Yb, Hf, Ta, W, Th, U) in seven Chinese reference soils. The Surrey prototype spectrometer was employed with sample ablation by a free-running ruby laser. Concentrations in the soils (GSS-2 to GSS-8) were calculated from elemental responses and sensitivities derived from another soil in the series, namely GSS-1. Comparisons with previous neutron activation analyses are made. Rapid semiquantitative analyses are proved feasible. About eighty percent of the LA-ICP-MS determined concentrations were within a factor of two of the concentrations measured by INAA, and many were considerably closer than this. Precisions were typically in the range 2–10% RSD, but some were considerably poorer for elements present at trace levels.  相似文献   
2.
A novel chemical sensor for the colorimetric detection of mercuric salts is described. The sensor is based on a mesoporous nanocrystalline TiO2 film sensitised with a ruthenium dye; immersion of this film in an aqueous solution of Hg2+ results in a rapid colorimetric response, with both a high selectivity and a sub-micromolar sensitivity.  相似文献   
3.
The selectivity and sensitivity of two colorimetric sensors based on the ruthenium complexes N719 [bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(II) bis(tetrabutylammonium) bis(thiocyanate)] and N749 [(2,2':6',2' '-terpyridine-4,4',4' '-tricarboxylate)ruthenium(II) tris(tetrabutylammonium) tris(isothiocyanate)] are described. It was found that mercury ions coordinate reversibly to the sulfur atom of the dyes' NCS groups. This interaction induces a color change in the dyes at submicromolar concentrations of mercury. Furthermore, the color change of these dyes is selective for mercury(II) when compared with other ions such as lead(II), cadmium(II), zinc(II), or iron(II). The detection limit for mercury(II) ions--using UV-vis spectroscopy--in homogeneous aqueous solutions is estimated to be approximately 20 ppb for N719 and approximately 150 ppb for N749. Moreover, the sensor molecules can be adsorbed onto high-surface-area mesoporous metal oxide films, allowing reversible heterogeneous sensing of mercury ions in aqueous solution. The results shown herein have important implications in the development of new reversible colorimetric sensors for the fast, easy, and selective detection and monitoring of mercuric ions in aqueous solutions.  相似文献   
4.
Semiquantitative analysis with accuracy of ±30 to 50% is a valuable tool for rapid screening of samples prior to quantitative determination of trace metals. In this study semiquantitative analysis software available with commercial inductively coupled plasma–mass spectrometry (ICP-MS) instrumentation is applied for rapid multielemental analysis, and the accuracy and precision of this semiquantitative analysis approach is evaluated with biological certified reference materials. Samples were prepared by high-pressure, high-temperature nitric acid vapor-phase digestion. For most elements the measured semiquantitative results are in the range of the certified values. With appropriate analyte solution dilution, the measured concentrations of the major elements (e.g., Ca) also agree with certified values. The accuracy is within ±10% for 28 element determinations that include 16 individual elements (Ag, As, Cd, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb, Rb, Sb, Sr, Tl, and Zn) and ±20% for 54 element determinations that include three more elements (Mg, V, and U) in eight certified reference materials including water. The method precision is 11 ± 11% (relative standard deviation,n= 65).  相似文献   
5.
We report on the exciton dynamics in the J-aggregating dye 5,5, 6,6-tetrachloro-1,1-diethyl-3,3-di(4-sulfobutyl)-benzimidazolocarbocyanine which is known readily to form J-aggregates, even at room temperature and at a low concentration. We performed a series of time-correlated singlephoton-counting experiments at different emission wavelengths and at different temperatures in the range between 1.5 and 125 K. Additionally, the temperature dependence of the relative fluorescence quantum yield was determined.  相似文献   
6.
In this paper we focus upon the electron injection dynamics in complete dye-sensitized nanocrystalline metal oxide solar cells (DSSCs). Electron injection dynamics are studied by transient absorption and emission studies of DSSCs and correlated with device photovoltaic performance and charge recombination dynamics. We find that the electron injection dynamics are dependent upon the composition of the redox electrolyte employed in the device. In a device with an electrolyte composition yielding optimum photovoltaic device efficiency, electron injection kinetics exhibit a half time of 150 ps. This half time is 20 times slower than that for control dye-sensitized films covered in inert organic liquids. This retardation is shown to result from the influence of the electrolyte upon the conduction band energetics of the TiO2 electrode. We conclude that optimum DSSC device performance is obtained when the charge separation kinetics are just fast enough to compete successfully with the dye excited-state decay. These conditions allow a high injection yield while minimizing interfacial charge recombination losses, thereby minimizing "kinetic redundancy" in the device. We show furthermore that the nonexponential nature of the injection dynamics can be simulated by a simple inhomogeneous disorder model and discuss the relevance of our findings to the optimization of both dye-sensitized and polymer based photovoltaic devices.  相似文献   
7.
In this paper, we report a spectroelectrochemical investigation of proton-coupled electron transfer in flavodoxin D. vulgaris Hildenborough (Fld). Poly-L-lysine is used to promote the binding of Fld to the nanocrystalline, mesoporous SnO(2) electrodes. Two reversible redox couples of the immobilized Fld are observed electrochemically and are assigned by spectroelectrochemistry to the quinone/semiquinone and semiquinone/hydroquinone couples of the protein's flavin mononucleotide (FMN) redox cofactor. Comparison with control data for free FMN indicates no contamination of the Fld data by dissociated FMN. The quinone/semiquinone and semiquinone/hydroquinone midpoint potentials (E(q/sq) and E(sq/hq)) at pH 7 were determined to be -340 and -585 mV vs Ag/AgCl, in good agreement with the literature. E(q/sq) exhibited a pH dependence of 51 mV/pH. The kinetics of these redox couples were studied using cyclic voltammetry, cyclic voltabsorptometry, and chronoabsorptometry. The semiquinone/quinone reoxidation is found to exhibit slow, potential-independent but pH-sensitive kinetics with a reoxidation rate constant varying from 1.56 s(-)(1) at pH 10 to 0.0074 s(-)(1) at pH 5. The slow kinetics are discussed in terms of a simple kinetics model and are assigned to the reoxidation process being rate limited by semiquinone deprotonation. It is proposed that this slow deprotonation step has the physiological benefit of preventing the undesirable loss of reducing equivalents which results from semiquinone oxidation to quinone.  相似文献   
8.
Topoglidis E  Lutz T  Willis RL  Barnett CJ  Cass AE  Durrant JR 《Faraday discussions》2000,(116):35-46; discussion 67-75
We have investigated the use of nanoporous TiO2 films as substrates for protein immobilisation. Such films are of interest due to their high surface area, optical transparency, electrochemical activity and ease of fabrication. These films moreover allow detailed spectroscopic study of protein/electrode electron transfer processes. We find that protein immobilisation on such films may be readily achieved from aqueous solutions at 4 degrees C with a high binding stability and no detectable protein denaturation. The nanoporous structure of the film greatly enhances the active surface area available for protein binding (by a factor of up to 850 for an 8 microns thick film). We demonstrate that the redox state of proteins such as immobilised cytochrome-c (Cyt-c) and haemoglobin (Hb) may be modulated by the application of an electrical bias potential to the TiO2 film, without the addition of electron transfer mediators. The binding of Cyt-c on the TiO2 films is investigated as a function of film thickness, protein concentration, protein surface charge and ionic strength. We demonstrate the potential use of immobilised Hb on such TiO2 films for the detection of dissolved CO in aqueous solutions. We further show that protein/electrode electron transfer may be initiated by UV bandgap excitation of the TiO2 electrode. Both photooxidation and photoreduction of the immobilised proteins can be achieved. By employing pulsed UV laser excitation, the interfacial electron transfer kinetics can be monitored by transient optical spectroscopy, providing a novel probe of protein/electrode electron transfer kinetics. We conclude that nanoporous TiO2 films may be useful both for basic studies of protein/electrode interactions and for the development of novel bioanalytical devices such as biosensors.  相似文献   
9.
The first kinetic study of a substrate (CN(-)) binding to the isolated active site (extracted FeMo-cofactor) of nitrogenase is described. The kinetics of the reactions between CN(-) and various derivatives of extracted FeMo-cofactor [FeMoco-L; where L is bound to Mo, and is NMF, Bu(t)NC, or imidazole (ImH)] have been followed using a stopped-flow, sequential-mix method in which the course of the reaction is followed indirectly, by monitoring the change in the rate of the reaction of the cofactor with PhS(-). The kinetic results, together with DFT calculations, indicate that the initial site of CN(-) binding to FeMoco-L is controlled by a combination of the electron-richness of the cluster core and lability of the Mo-L bond. Ultimately, the reactions between FeMoco-L and CN(-) involve displacement of L and binding of CN(-) to Mo. These reactions occur with a variety of rates and rate laws dependent on the nature of L. For FeMoco-NMF, the reaction with CN(-) is complete within the dead-time of the apparatus (ca. 4 ms), while with FeMoco-CNBu(t) the reaction is much slower and exhibits first order dependences on the concentrations of both FeMoco-CNBu(t) and CN(-) (k = 2.5 +/- 0.5 x 10(4) dm(3) mol(-1) s(-1)). The reaction of FeMoco-ImH with CN(-) occurs at a rate which exhibits a first order dependence on FeMoco-ImH but is independent of the concentration of CN(-) (k = 50 +/- 10 s(-1)). The results are interpreted in terms of CN(-) binding directly to the Mo site for FeMoco-NMF and FeMoco-ImH, but with FeMoco-CNBu(t) initial binding at an Fe site is followed by movement of CN(-) to Mo. Complementary DFT calculations are consistent with this interpretation, indicating that, in FeMoco-L, the Mo-L bond is stronger for L = ImH than for L = CNBu(t) and the binding of CN(-) to Mo is stronger than to any Fe atom in the cofactor.  相似文献   
10.
Diamond-like carbon (DLC) films were grown from radiofrequency plasmas of acetylene-argon mixtures, at different excitation powers, P. The effects of this parameter on the plasma potential, electron density, electron temperature, and plasma activity were investigated using a Langmuir probe. The mean electron temperature increased from about 0.5 to about 7.0 eV while the mean electron density decreased from about 1.2 × 109 to about 0.2 × 109 cm–3 as P was increased from 25 to 150 W. Both the plasma potential and the plasma activity were found to increase with increasing P. Through actinometric optical emission spectrometry, the relative concentrations of CH, [CH], and H, [H], in the discharge were mapped as a function of the applied power. A rise in [H] and a fall in [CH] with increasing P were observed and are discussed in relation to the plasma characteristics and the subimplantation model. The optical properties of the films were calculated from ultraviolet-visible spectroscopic data; the surface resistivity was measured by the two-point probe method. The optical gap, E G, and the surface resistivity, s, fall with increasing P. E G and s are in the ranges of about 2.0–1.3 eV and 1014–1016 /, respectively. The plasma power also influences the film self-bias, V b, via a linear dependence, and the effect of V b on ion bombardment during growth is addressed together with variation in the relative densities of sp2 and sp3 bonds in the films as determined by Raman spectroscopy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号