首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   0篇
  国内免费   1篇
化学   15篇
物理学   2篇
  2016年   1篇
  2013年   1篇
  2011年   2篇
  2007年   2篇
  2005年   1篇
  2004年   2篇
  2002年   1篇
  2000年   1篇
  1999年   1篇
  1998年   2篇
  1997年   1篇
  1996年   2篇
排序方式: 共有17条查询结果,搜索用时 15 毫秒
1.
Semiquantitative analysis with accuracy of ±30 to 50% is a valuable tool for rapid screening of samples prior to quantitative determination of trace metals. In this study semiquantitative analysis software available with commercial inductively coupled plasma–mass spectrometry (ICP-MS) instrumentation is applied for rapid multielemental analysis, and the accuracy and precision of this semiquantitative analysis approach is evaluated with biological certified reference materials. Samples were prepared by high-pressure, high-temperature nitric acid vapor-phase digestion. For most elements the measured semiquantitative results are in the range of the certified values. With appropriate analyte solution dilution, the measured concentrations of the major elements (e.g., Ca) also agree with certified values. The accuracy is within ±10% for 28 element determinations that include 16 individual elements (Ag, As, Cd, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb, Rb, Sb, Sr, Tl, and Zn) and ±20% for 54 element determinations that include three more elements (Mg, V, and U) in eight certified reference materials including water. The method precision is 11 ± 11% (relative standard deviation,n= 65).  相似文献   
2.
Human tooth enamel provides a nearly permanent and chronological record of an individuals nutritional status and anthropogenic trace metal exposure during development; it might thus provide an excellent bio archive. We investigated the micro-spatial distribution of trace metals (Cu, Fe, Mg, Sr, Pb, and Zn) in 196×339 m2 raster pattern areas (6.6×104 m2) in a deciduous tooth using laser ablation-inductively coupled plasma-mass spectrometry (LA–ICP–MS). Ablated areas include prenatal and postnatal enamel, the neonatal line, the dentine–enamel junction (DEJ), dentine, and the dentine–pulp junction. Topographic variations in the surface elemental distribution of lead, zinc, strontium, and iron intensities in a deciduous tooth revealed heterogeneous distribution within and among regions. 43Ca normalized elemental intensities showed the following order: Sr>Mg>>Zn>Pb>Fe>Cu. Elevated zinc and lead levels were present in the dental pulp region and at the neonatal line. This study demonstrates the ability of LA–ICP–MS to provide unique elemental distribution information in micro spatial areas of dental hard tissues. Elemental distribution plots could be useful in decoding nutrition and pollution information embedded in their bio apatite structure.Presented in part at the 2002 Winter Conference on Plasma Spectrochemistry, Scottsdale, AZ, January 6–12, 2002. The poster was selected as an outstanding poster presentation.  相似文献   
3.
Determination of seven elements (Cu, Fe, Mg, Mn, Pb, Sr and Zn) in whole enamel and surface layers of extracted non-carious human teeth by FAAS, ETA AAS, ICP-AES and ICP-MS (Pb) is demonstrated. Techniques are described for obtaining whole enamel and its acid dissolution. Fifty microm width enamel layers from outer enamel surface to a 200 microm depth were successively etched in 1 mL of 3 M HClO4 for 3 min dissolution periods. Enamel samples were analyzed for populations under and over 20 years of age and enamel from Bronze Age teeth. Concentrations of microelements in the whole enamel and in the first surface layer (50 microm depth) were compared. With exception of Sr and Mg, all elements show significantly higher concentrations in the first layer than in whole enamel and higher concentration in teeth of individuals over 20 years, which demonstrate the cumulative effect of these elements. The Cu, Fe, Mn, Pb and Zn concentrations in four layers of erupted and non-erupted teeth decreased while Mg and Sr concentrations increased toward enamel-dentine junction. The concentrations of most elements were almost constant as they approached the 150 microm layer. This concentration gradient may result from interaction between saliva and teeth and supports the hypothesis that the surface de- and re-mineralization process is effective at most to 150 microm from the enamel surface.  相似文献   
4.
The presence of lead as a contaminant in calcium supplements has aroused considerable public health interest in recent years. In this investigation lead and lead isotope ratios were determined by ICP-MS in ten brands of calcium supplements after high pressure/temperature digestion. Calcium supplements (200 to 250 mg) were digested in 2 mL of nitric acid at 230?°C and at a pressure of 1770 psi (1.2 × 104 kPa). Lead concentrations were determined by matrix-matched lead standards prepared in a high-purity calcium carbonate matrix. Good recoveries of lead and calcium were obtained for certified animal bone reference material. High levels of Pb (8 to 28 μg Pb per g of calcium) were found in calcium supplements that contain dolomite or bone meal. Chelated and refined calcium supplements had lower Pb levels (0.8 to 0.9 μg Pb/g Ca). Application of lead isotope ratios to distinguish the origin of calcium sources was also explored.  相似文献   
5.
Lead exposure has received increased attention over the past few decades since it has been shown to have adverse effects on physical and intellectual development in humans. The use of biological tissues such as blood, teeth, hair, and bone for assessment of lead exposure has been previously demonstrated. While analysis of blood for trace metals provides information concerning recent exposure, hair offers insight into a period of several months, and is preferable since it is non-invasively collected and easily stored. The present study analyzed total of 49 ancient hair samples for lead (PbH) using LA-ICP-MS. Samples belonged to an ancient fisher hunter–gatherer culture called the “Chinchorro,” and who occupied regions of the Atacama Desert on the northern coast of Chile from approximately 5000–1500 B.C. and practiced the first-known form of artificial mummification. Several samples from a post-Chinchorro agricultural community (n = 12) ca. 1000–1400 A.D. were also analyzed. A suite of hair standards was developed using contemporary hair from the same region and was subsequently used to make linear calibration functions for lead determination in single strands of hair using LA-ICP-MS. Three linear scans ranged from 500 to 1000 μm were performed for each sample and signal intensities were normalized over 13C. The distribution of lead in the central medulla in a 100 μm cross-section scan of hair strand demonstrated minimal exogenous contamination. Hair lead (PbH) concentrations ranged between 2.2 μg/g and 12.8 μg/g could be accurately quantified with these standards. Twenty one out of 49 samples (43%) showed PbH concentrations higher than the average value of 5 μg/g for unexposed individuals (range 1.1–228.0 μg/g). Median hair lead concentrations by burial sites and are shown in order of decreasing concentration: Morro (13.8 μg/g) > Iquique (6.6 μg/g) > Azapa (4.5 μg/g) > Yungay (4.1 μg/g) > Camarones (2.7 μg/g). Most of the burial sites showed PbH concentrations greater than the normal value for unexposed individuals and outliers heavily influenced average concentrations. The results suggest that the Chinchorro and later agro-pastoral populations were not widely exposed to naturally elevated lead.  相似文献   
6.
Ingestion of relatively small amounts of lead is now recognized to cause significant neurological and cognitive effects in humans. Large quantities may be fatal, yet lead poisoning, especially of children, is still a major public health concern in many parts of the world. In rural Mexican communities lead oxide (PbO) is added to ceramic glaze as a fluxing agent, lowering starting firing temperatures to 500 °C. The purpose of this study is to characterize the lead chemical forms in ceramic glazes from the Solis Valley, Mexico, to investigate lead leaching properties of these ceramics, and to demonstrate the applicability of lead isotope signatures as a means of tracing lead source origins. Ceramics were collected from the rural village of Santa Maria de Canchesda, State of Mexico, Mexico. Dried liquid glazes, post-fired glaze material, and pure PbO were analyzed by diffuse reflectance infrared Fourier transform spectroscopy (DRIFT). Results from DRIFT analysis indicate that PbO (1429 cm−1 band) is the active form of lead found in liquid glazes and ceramics. Some shifting of 1429 cm−1 PbO peak to lower wavenumbers occurs in post-fired ceramics, and this may be due to the formation of lead bisilicate during firing. Ceramics samples were leached in 0.02 M citric acid solution for 1 min, and leached lead concentrations were measured using inductively coupled plasma-mass spectrometry (ICP-MS). Lead concentrations in these leachates varied from 0.4-80.4 μg ml−1, while the control pottery from the US leached only 0.1 μg ml−1 lead. Elemental distributions on glaze surfaces were identified by laser ablation (LA)-ICP-MS. Nitric acid extracts of soils, teeth, and ceramic glazes were analyzed for lead isotope ratios (207Pb/206Pb vs. 208Pb/206Pb) using ICP-MS. Similarities of tooth and ceramic lead isotope ratios indicate that ceramics may be a substantial source of body lead burden in the Solis Valley. This study demonstrates the applicability of lead isotope ratios for lead source identification, and it identifies potential health risks from ceramic use induced lead toxicity within the Solis Valley.  相似文献   
7.
8.
Water soluble tertiary amines enhance signals and decrease polyatomic chloride interferences in the direct inductively coupled plasma – mass spectrometric (ICP-MS) determination of As and Se in biological samples. Preliminary experiments with amine concentrations and nebulizer flow rates produced element and interference signal intensity changes. Arsenic and Se ICP-MS determination parameters have been optimized by a simplex procedure with amines in an argon plasma or without amines but with addition of N2 to the Ar. Variables include RF (radio frequency) power, nebulizer gas flow rate, intermediate gas flow rate, and amine concentration or nitrogen gas flow rate. Detection limit, minimization of polyatomic ion intensities, and reproducibility have been evaluated as reponse factors. The signal enhancement and element-to-molecular interference ratios differ to some extent with analyte intensity optimum operating conditions. The detection limits with addition of nitrogen (16 pg mL–1 for As and 180 pg mL–1 for Se) or of amines (8 pg mL–1 for As and 120 pg mL–1 for Se) and the extent of chloride interference minimization were compared. Amines addition was more beneficial. Biological standard reference materials and food and fecal samples were analyzed following different sample dissolution procedures.  相似文献   
9.
During burial, diagenetic alteration can invalidate the paleodietary signature, which the hydroxyapatite (Ca5(PO4)3OH) matrix in incremental tissues, such as tooth enamel, provides. Thus, analytical methods that can evaluate diagenetic changes are crucial in anthropological and archaeological investigations. Modern deciduous tooth enamel (exfoliated) from Solis, Mexico and Kalama, Egypt, as well as Bronze Age (circa 2200 B.C.E.) adult enamel from (present-day) Tell Abraq, U.A.E. and adult enamel from the New York African Burial Ground (NYABG) in lower Manhattan, were analyzed using diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). The samples were compared to synthetic hydroxyapatite powder and bone ash samples. The DRIFTS spectra of tooth enamel yielded similar infra red finger print pattern to previous pellet-based FTIR spectra in both absorbance and Kubelka–Munk units. The study demonstrates that DRIFTS is a convenient alternative to pellet-based transmission FTIR in testing diagenetic changes in hard tissue for archaeological investigations. Tooth enamel samples contained a higher carbonate–phosphate ratio than synthetic hydroxyapatite and bone ash standard samples. Correlations are reported between Crystallinity Index (CIAb) and carbonate–phosphate ratio, strontium–calcium ratio, and fluoride peak appearance. Crystallinity indexes (CIAb) were in the range of 2.6–3.8 (in absorbance units) and Kubelka–Munk Crystallinity indexes (CIKM) were in the range of 3.1–4.9.  相似文献   
10.
Water soluble tertiary amines enhance signals and decrease polyatomic chloride interferences in the direct inductively coupled plasma – mass spectrometric (ICP-MS) determination of As and Se in biological samples. Preliminary experiments with amine concentrations and nebulizer flow rates produced element and interference signal intensity changes. Arsenic and Se ICP-MS determination parameters have been optimized by a simplex procedure with amines in an argon plasma or without amines but with addition of N2 to the Ar. Variables include RF (radio frequency) power, nebulizer gas flow rate, intermediate gas flow rate, and amine concentration or nitrogen gas flow rate. Detection limit, minimization of polyatomic ion intensities, and reproducibility have been evaluated as reponse factors. The signal enhancement and element-to-molecular interference ratios differ to some extent with analyte intensity optimum operating conditions. The detection limits with addition of nitrogen (16 pg mL–1 for As and 180 pg mL–1 for Se) or of amines (8 pg mL–1 for As and 120 pg mL–1 for Se) and the extent of chloride interference minimization were compared. Amines addition was more beneficial. Biological standard reference materials and food and fecal samples were analyzed following different sample dissolution procedures.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号