首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31篇
  免费   0篇
化学   11篇
物理学   20篇
  2011年   2篇
  2008年   1篇
  2007年   2篇
  2006年   2篇
  2003年   2篇
  2002年   1篇
  2000年   5篇
  1996年   1篇
  1995年   1篇
  1994年   4篇
  1993年   3篇
  1992年   2篇
  1991年   1篇
  1989年   1篇
  1987年   1篇
  1986年   2篇
排序方式: 共有31条查询结果,搜索用时 15 毫秒
1.
Characterization of autocatalytic decomposition reactions is important for the safe handling and storage of energetic materials. Isothermal differential scanning calorimetry (DSC) has been widely used to detect autocatalytic decomposition of energetic materials. However, isothermal DSC tests are time consuming and the choice of experimental temperature is crucial. This paper shows that an automatic pressure tracking calorimeter (APTAC) can be a reliable and efficient screening tool for the identification of autocatalytic decomposition behavior of energetic materials. Hydroxylamine nitrate (HAN) is an important member of the hydroxylamine family. High concentrations of HAN are used as liquid propellants, and low concentrations of HAN are used primarily in the nuclear industry for decontamination of equipment. Because of its instability and autocatalytic decomposition behavior, HAN has been involved in several incidents.  相似文献   
2.
3.
4.
We describe the fabrication of metallic Cu spiral/helical nanostructures prepared via selective electroless metallization of a phospholipid microtubule template. The metallization template is created through selective, sequential adsorption of the oppositely charged polyelectrolytes, sodium poly(styrenesulfonate) (PSS) and poly(ethyleneimine) (PEI), onto nanoscale seams naturally occurring on the microtubule surface. A negatively charged Pd(II) nanoparticle catalyst is bound to the terminal cationic PEI layer of the multilayer film and initiates selective template metallization to form the helical Cu nanostructures. Details of the process are presented, and a mechanism and factors affecting the control of the feature critical dimensions are discussed.  相似文献   
5.
6.
Several magnetic and optical processes contribute to the magneto-optical response of nickel thin films after excitation by a femtosecond laser pulse. We achieved a first complete identification by explicitly measuring the time-resolved Kerr ellipticity and rotation, as well as its temperature and magnetic field dependence in epitaxially grown (111) and (001) oriented Cu/Ni/Cu wedges. The first hundreds of femtoseconds the response is dominated by state filling effects. The true demagnetization takes approximately 0.5-1 ps. At the longer (sub-ns) time scales the spins are found to precess in their anisotropy field. Simple and transparent models are introduced to substantiate our interpretation.  相似文献   
7.
8.
Ligand-stabilized platinum nanoparticles (Pt NPs) can be used to build well-defined three-dimensional (3-D) nanostructured electrodes for better control of the catalyst architecture in proton exchange membrane fuel cells (PEMFCs). Platinum NPs of 1.7 +/- 0.5 nm diameter stabilized by the water-soluble phosphine ligand, tris(4-phosphonatophenyl)phosphine (TPPTP, P(4-C6H4PO3H2)3), were prepared by ethylene glycol reduction of chloroplatinic acid and subsequent treatment of the isolated nanoparticles with TPPTP. The isolated TPPTP-stabilized Pt NPs were characterized by multinuclear magnetic resonance spectroscopy (31P and 195Pt NMR), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), and extended X-ray absorption fine structure (EXAFS). The negatively charged TPPTP-Pt NPs were electrostatically deposited onto a glassy carbon electrode (GCE) modified with protonated 4-aminophenyl functional groups (APh). Multilayers were assembled via electrostatic layer-by-layer deposition with cationic poly(allylamine HCl) (PAH). These multilayer films are active for the key hydrogen fuel cell reactions, hydrogen oxidation (anode) and oxygen reduction (cathode). Using a rotating disk electrode configuration, fully mass-transport limited kinetics for hydrogen oxidation was obtained after 3 layers of TPPTP-Pt NPs with a total Pt loading of 4.2 microg/cm2. Complete reduction of oxygen by four electrons was achieved with 4 layers of TPPTP-Pt NPs and a total Pt loading of 5.6 microg/cm2. A maximum current density for oxygen reduction was reached with these films after 5 layers resulting in a mass-specific activity, i(m), of 0.11 A/mg(Pt) at 0.9 V. These films feature a high electrocatalytic activity and can be used to create systematic changes in the catalyst chemistry and architecture to provide insight for building better electrocatalysts.  相似文献   
9.
We describe reproducible protocols for the chemisorption of self-assembled monolayers (SAMs), useful as imaging layers for nanolithography applications, from p-chloromethylphenyltrichlorosilane (CMPS) and 1-(dimethylchlorosilyl)-2-(p,m-chloromethylphenyl)ethane on native oxide Si wafers. Film chemisorption was monitored and characterized using water contact angle, X-ray photoelectron spectroscopy, and ellipsometry measurements. Atomic force microscopy was used to monitor the onset of multilayer deposition for CMPS films, ultimately allowing film macroscopic properties to be correlated with their surface coverage and nanoscale morphologies. Although our results indicate the deposition of moderate coverage, disordered SAMs under our conditions, their quality is sufficient for the fabrication of sub-100-nm-resolution metal features. The significance of our observations on the design of future imaging layers capable of molecular scale resolution in nanolithography applications is briefly discussed.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号