首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
化学   4篇
数学   1篇
物理学   4篇
  2013年   3篇
  2012年   1篇
  2011年   1篇
  2007年   1篇
  2005年   1篇
  1998年   1篇
  1987年   1篇
排序方式: 共有9条查询结果,搜索用时 281 毫秒
1
1.
A series of three-arm star block copolymers were examined using atomic force microscopy (AFM). These stars consisted of a polystyrene core composed of ca. 111 styrene units/branch with poly(ethylene oxide) (PEO) chains at the star periphery. Each star contained different amounts of PEO, varying from 107 to 415 ethylene oxide units/branch. The stars were spread as thin films at the air/water interface on a Langmuir trough and transferred onto mica at various surface pressures. Circular domains representing 2D micelle-like aggregated molecules were observed at low pressures. Upon further compression, these domains underwent additional aggregation in a systematic manner, including micellar chaining. At this point, domain area and the number of molecules/domain increased with increasing pressure. In addition, it was found that longer PEO chains led to greater intermolecular separation and less aggregation. These AFM results correspond to attributes seen in the surface pressure-area isotherms of the stars. In addition, they demonstrate the viability of AFM as a quantitative characterization technique.  相似文献   
2.
3.
Credo GM  Su X  Wu K  Elibol OH  Liu DJ  Reddy B  Tsai TW  Dorvel BR  Daniels JS  Bashir R  Varma M 《The Analyst》2012,137(6):1351-1362
We introduce a label-free approach for sensing polymerase reactions on deoxyribonucleic acid (DNA) using a chelator-modified silicon-on-insulator field-effect transistor (SOI-FET) that exhibits selective and reversible electrical response to pyrophosphate anions. The chemical modification of the sensor surface was designed to include rolling-circle amplification (RCA) DNA colonies for locally enhanced pyrophosphate (PPi) signal generation and sensors with immobilized chelators for capture and surface-sensitive detection of diffusible reaction by-products. While detecting arrays of enzymatic base incorporation reactions is typically accomplished using optical fluorescence or chemiluminescence techniques, our results suggest that it is possible to develop scalable and portable PPi-specific sensors and platforms for broad biomedical applications such as DNA sequencing and microbe detection using surface-sensitive electrical readout techniques.  相似文献   
4.
5.
6.
The Mellin transform and Poisson summation formula are used to derive an expression for the Coulomb interaction energy of a three-dimensional system with periodicity in one direction. Initially, calculations are performed for interactions characterized by any inverse power and, using the analytical continuation of the energy function, one obtains the final expression for the interaction energy of charges. We consider also a special case when two different charges are located on a line parallel to the periodicity direction. The energy and force expressions are identical to those obtained from the Lekner summation which is simply a sum over reciprocal lattice terms. The convergence behaviour of the Lekner summation is compared with that based on the Ewald type approach.  相似文献   
7.
A. BRÓDKA 《Molecular physics》2013,111(21):3177-3180
The Ewald-type method, its modified version and the Lekner-type method for summing Coulomb interactions in a system periodic along one direction are presented and compared. Advantages and disadvantages of these methods are discussed, and the methods are tested in molecular dynamics simulations of acetone molecules confined to cylindrical silica pores.  相似文献   
8.
The integral representation of the gamma function and the Poisson summation formula are used to calculate the interaction energy of charged particles in a 3-dimensional system periodic in two directions. A parallelogram shape simulation box is considered. Calculations are carried out for interactions described by any inverse power, and analytical continuation of the energy function leads to the final expression for the Coulomb interaction energy. Summation over the simulation box replica along one or the other side of the box base is replaced by summation in reciprocal space. Therefore there are two equivalent formulas for the potential energy that offer the possibility of avoiding slowly convergent series. The energy expressions are identical to those obtained from the Lekner method. The special case is considered where the functions defining the energy are infinite, i.e. when two charges lie on a line parallel to the simulation box side that was chosen to convert real space summation into reciprocal space.  相似文献   
9.
Recently, tethered bilayer lipid membranes (tBLMs) have shown high potential as biomimetic systems due to their high stability and electrical properties, and have been used in applications ranging from membrane protein incorporation to biosensors. However, the kinetics of their formation remains largely uninvestigated. By using quartz crystal microbalance with impedance analysis (QCM-Z), we were able to monitor both the kinetics and viscoelastic properties of tether adsorption and vesicle fusion. Formation of the tether monolayer was shown to follow pseudo-first-order Langmuir kinetics with association and dissociation rate constants of 21.7 M-1 s(-1) and 7.43 x 10-6 s(-1), respectively. Moreover, the QCM-Z results indicate a rigid layer at the height of deposition, which then undergoes swelling as indicated by AFM. The deposition of vesicles to the tether layer also followed pseudo-first-order Langmuir kinetics with observed rate constants of 5.58 x 10(-2) and 2.41 x 10-2 s(-1) in water and buffer, respectively. Differential analysis of the QCM-Z data indicated deposition to be the fast kinetic step, with the rate-limiting steps being water release and fusion. Atomic force microscopy pictures taken complement the QCM-Z data, showing the major stages of tether adsorption and vesicle fusion, while providing a road map to successful tBLM formation.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号