首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   0篇
化学   12篇
  2010年   1篇
  2008年   1篇
  2005年   1篇
  2004年   1篇
  2000年   1篇
  1996年   1篇
  1994年   2篇
  1992年   1篇
  1983年   1篇
  1977年   1篇
  1971年   1篇
排序方式: 共有12条查询结果,搜索用时 15 毫秒
1.
The mass spectra of N-propyl- (I), N-allyl- (IV), and N-propargylisatin (VII) and their 5-methyl (II, V, VIII) and 7-methyl (III, VI, and IX) derivatives were recorded. It is shown that a portion of the [M-2CO]+ ions in the mass spectra of N-propargylisatins undergo rearrangement to give ions with a quinoline structure. A scheme for the fragmentation of the investigated compounds is presented. The mass spectra of the 5- and 7-methyl derivatives are compared.See [1] for communication I.Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 5, pp. 639–641, May, 1977.  相似文献   
2.
Poor solvent polymer solutions near the glass transition temperature are considered on the basis of the nonlocal entropy model which allows the possibility of microphase separation transition. The dependence of the magnitude of nonlocal entropy and nonlocality radius on the temperature are explicitly taken into account. It is shown that accounting for nonlocal entropy can lead to i) the solubility enhancement in the vicinity of glass transition temperature, ii) microphase separation transition. Microphase separation transition is studied in the weak segregation limit. Phase diagrams containing the regions of stability of different microdomain structures, as well as the regions of macroscopic phase separation, are obtained.  相似文献   
3.
Microphase separation in solutions of weakly charged polyelectrolytes in poor solvents is studied in the weak segregation limit within the framework of the mean field approximation using a method first developed by Leibler. As a result a complete phase diagram of the solution near the critical point is obtained. The regions of the stability of the disordered, homogeneous phase and of body-centered cubic (bcc), triangular and lamellar microdomain structures, as well as the phase separation regions are determined. The most striking difference in comparison with the corresponding diagram for block-copolymer melts is the existence of broad phase separation regions even for monodisperse systems. As the quality of solvent becomes poorer, the triangular microdomain structure remains the most stable among microdomain phases of other symmetry.  相似文献   
4.
In the present paper, we consider the possibility of microphase separation transition in poor solvent polymer solutions. It is shown that this phenomenon can take place if the following two conditions are fulfilled: i) there is a large entropic contribution to the entropy of polymer/solvent mixing, i.e., solvent acts like a plastisizer; ii) this entropic contribution is nonlocal. Both conditions are met below the glass transition temperature for the pure polymer near the so-called Berghmans point when the glass transition curve intersects the liquid-liquid phase separation curve for polymer solutions. The phase diagram for the microphase separation transition is calculated within the framework of weak segregation approximation first proposed by Leibler for block-copolymer systems. The regions of stability of different microdomain structures (lamellar, triangular, body-centered-cubic) are obtained. It is shown that under certain conditions the phase diagram can have two critical points related to the macro- and microphase separation respectively.This paper is dedicated to Prof. E. W. Fischer on the occasion of his 65th Birthday.This work was done in the course of the Humboldt Research Award stay of A.R. Khokhlov at the Max-Planck-Institute for Polymer Research in Mainz. During this stay A.R.K. greatly benefited from numerous discussions with Professor E.W. Fischer who introduced him to the fascinating field of glass transition in polymer systems and formulated several new directions for future research.  相似文献   
5.
The reversible binding between a planar polymer layer functionalized by ligands and a planar cell surface containing different densities of mobile receptors has been studied by Monte Carlo simulations. Using the acceptance-ratio method, the distance-dependent profiles for the average number of ligands bound to receptors, the total free energy for the polymer layer-cell surface interaction and the interaction force were obtained. Four main design parameters for the polymer layer were considered: the degree of functionalization, chain degree of polymerization, polymer grafting density and the binding energy for the ligand-receptor interaction. We found that an increase in the degree of functionalization or in the absolute energy of ligand-receptor binding results in a larger number of ligands bound to the receptors, lower free energy, and stronger attractive force. Polymer layers composed of shorter chains were found to exhibit a deeper and narrower free energy profile and a larger attractive force, while longer tethers can interact with the cell surface at a larger and broader range of separation distances, in agreement with experimental observations. Our simulation results show that the increase in polymer grafting density from the mushroom to brush regime enhances the ligand availability and results in a stronger attractive force, increases the maximum binding distance, but exhibits a shallower free energy minimum due to the smaller tolerance to compression for polymer layers with high grafting density. We used two measures of the polymer layer binding affinity to the cell surface: the free energy minimum, related to the equilibrium binding constant and the fraction of bound ligands. We found that the polymer layers with a smaller chain length and grafting density, larger degree of functionalization, and larger absolute binding energy exhibit both a larger equilibrium binding constant to the cell surface and a larger average number of bound ligands, except for high binding energies when the maximum level of binding is reached independently of polymer length and grafting density. We showed that high binding specificity can be achieved by the polymer layers with intermediate ligand-receptor binding energies or an intermediate number of ligands, as a larger binding energy or number of ligands ensures a high binding affinity but lacks specificity while a smaller binding energy or number of ligands provides inadequate affinity. We found that the results for polymer layers with different properties follow a similar pattern when both high binding affinity to cells with high receptor density and high binding specificity are considered. As a result, the optimal design of the polymer layers can be achieved by using several different strategies, which are discussed.  相似文献   
6.
7.
Flow‐induced phase separation in binary blends of end‐associating polymers is studied analytically. To describe the conformational and orientational properties of a polymer chain a simple dumbbell model is applied. It is demonstrated that the association rate for formation of associated diblock copolymer‐like chains decreases with an increase of flow rate. This is due to the extra‐stretching of the associated chain compared with the two initial homopolymer chains. The decrease in the fraction of associated diblock copolymer‐like chains makes the homogeneous state less stable, so the effect of flow manifests itself in the enhancement of the segregation tendency in these kind of associated polymer blends.  相似文献   
8.
Equilibrium metal-ligand complexation leading to formation of linear or ringlike supramolecular polymers is studied by means of Monte Carlo (MC) simulations and theoretical analysis. We found that in most of the cases high-molecular-weight polymers are formed over a rather narrow composition range (near the 2:1 ligand-metal ratio). Besides the imbalance in the number of metals and ligands, the molecular weight decrease in the metal-rich area is caused by an increase in 1:1 ligand-metal complex formation. The results of simulations and theoretical modeling show that the fraction of 1:1 complexes considerably decreases for metal-ligand pairs with a high cooperativity of complexation. On the basis of our analytical model, we suggest a simple criterion for choosing the metal/ligand pair to achieve high molecular weight complexes in a broad range of metal-rich compositions. Dilution of a solution of metallosupramolecular polymers is found to decrease the average molecular weight and to enhance ring formation, which otherwise is very limited.  相似文献   
9.
The degree of thermal stability of magnesium haloalkoxycarbinolates containing thienyl groups and dichloro-, trichloro-, and trifluoromethyl groups was explained. The effect of substituents in the thienyl group on the stability of the magnesium haloalkoxycarbinolates was studied.  相似文献   
10.
Using Monte Carlo simulations we study the influence of ligand architecture (valence, branching length) and structure (polydispersity) of a flat protective polymer layer on the accessibility of its functional groups and efficiency of receptor targeting. Two types of receptor surfaces were considered: the surface homogeneously covered with receptors and the surface containing a finite number of receptor sites. We found that multivalent ligands provide a larger density of targeting groups on the periphery of the layer compared to monovalent ligands for the same overall number of targeting groups per polymer layer. Because of their cooperativity in binding, multivalent ligands were also considerably more efficient in binding to both types of receptor surfaces. With an increase of ligand valence the number of functional groups attached to receptors noticeably increases. Short-branched divalent ligands show an especially high cooperativity in binding to closely packed receptors. However, in the case of immobile receptors separated by a finite distance from each other, the average distance between the functional groups belonging to the same short divalent ligand is too small to reach different receptors simultaneously and the receptor binding is less efficient than in the monovalent ligand case. Using a bidisperse protective polymer layer formed by short nonfunctional polymers and long functionalized polymers considerably increases the fraction of functional groups on the periphery of the layer. Simulations of receptor binding confirm the high efficiency of receptor targeting by bidisperse polymer layers, which is achieved by means of larger compressibility and higher capability of the ligands to reach out compared to the corresponding monodisperse layers. The concepts of multivalent ligands and a bidisperse protective polymer layer each have their own advantages which can be combined for an enhanced targeting effect.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号