首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30篇
  免费   1篇
化学   26篇
力学   1篇
数学   2篇
物理学   2篇
  2022年   1篇
  2020年   1篇
  2019年   1篇
  2017年   1篇
  2016年   2篇
  2015年   4篇
  2014年   1篇
  2013年   3篇
  2012年   1篇
  2011年   2篇
  2010年   2篇
  2008年   1篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  2001年   5篇
  1996年   1篇
  1993年   1篇
  1987年   1篇
排序方式: 共有31条查询结果,搜索用时 15 毫秒
1.
Mineralization procedures for arsenic and selenium analysis are usually limited to wet digestion methods owing to high volatility of these analytes. On the other hand, variable amounts of silicon in some types of samples imply elaborated mineralization procedures to liberate analytes which may be retained in an insoluble residue. Consequently, methods for such material generally include an hydrofluoric step followed by an evaporation to dryness. This type of mineralization is most easily accomplished using a dry ashing procedure. For plant analysis, a well validated and readily applicable dry ashing method is used for a long time in several laboratories but up today one could suppose that As and Se determinations cannot be performed after such a type of mineralization. Surprisingly, it has been observed that for plant samples these analytes are detected even after a calcination at 450 degrees C. The general usefulness of a dry ashing method for analysis of all other analytes (main, minor and trace elements) incitates us to also verify As and Se recoveries. Results obtained in this work indicate clearly that plants of terrestrial origin may be mineralized using dry ashing procedure without As and Se losses. This statement was confirmed by analyses of several reference terrestrial plant samples (RMs) and laboratory control samples. Another confirmation was given by the direct graphite furnace analysis of the same plant samples but in slurried form (SS-ETAAS). As a direct consequence, As and Se analysis in terrestrial plants no more necessitates a separate preparation methodology. On the other hand, significant losses of As and Se were observed for aquatic plants, e.g. algaes. For the analysis of this type of samples, a separate wet digestion procedure remains unavoidable if the determination of As and Se has to be considered. Also some preparation procedures were tested for As and Se-analysis of soil and sediment reference samples. In these cases the wet digestion with a mixture of nitric, perchloric and hydrofluoric acids seems to remain the best alternative.  相似文献   
2.
In recent years, near-infrared (NIR) hyperspectral imaging has proved its suitability for quality and safety control in the cereal sector by allowing spectroscopic images to be collected at single-kernel level, which is of great interest to cereal control laboratories. Contaminants in cereals include, inter alia, impurities such as straw, grains from other crops, and insects, as well as undesirable substances such as ergot (sclerotium of Claviceps purpurea). For the cereal sector, the presence of ergot creates a high toxicity risk for animals and humans because of its alkaloid content. A study was undertaken, in which a complete procedure for detecting ergot bodies in cereals was developed, based on their NIR spectral characteristics. These were used to build relevant decision rules based on chemometric tools and on the morphological information obtained from the NIR images. The study sought to transfer this procedure from a pilot online NIR hyperspectral imaging system at laboratory level to a NIR hyperspectral imaging system at industrial level and to validate the latter. All the analyses performed showed that the results obtained using both NIR hyperspectral imaging cameras were quite stable and repeatable. In addition, a correlation higher than 0.94 was obtained between the predicted values obtained by NIR hyperspectral imaging and those supplied by the stereo-microscopic method which is the reference method. The validation of the transferred protocol on blind samples showed that the method could identify and quantify ergot contamination, demonstrating the transferability of the method. These results were obtained on samples with an ergot concentration of 0.02 % which is less than the EC limit for cereals (intervention grains) destined for humans fixed at 0.05 %.
Online Abstract Figure
Pictures showing a the manual removal of ergot bodies and b the observation by the stereo-microscopic method (official method); c the metallic holder with the reference material, and d the NIR hyperspectral SisuCHEMA instrument  相似文献   
3.
An intercomparison study was conducted to determine the presence of processed animal proteins (PAPs), including meat and bone meal (MBM) from various species, in animal feed. The performances of different methods, such as microscopy, polymerase chain reaction (PCR), immunoassays, and a protocol based on iquid chromatography (LC), were compared. Laboratories were asked to analyze for PAPs from all terrestrial animals and fish (total PAPs); mammalian PAPs; ruminant PAPs; and porcine PAPs. They were free to use their method of choice. In addition, laboratories using microscopy were asked to determine the presence of PAPs from terrestrial animals, which is applicable only to microscopy. For total PAPs microscopy, LC and some immunoassays showed sufficient results at a concentration as low as 0.1% MBM in the feed. In contrast, PCR was not fit for purpose. In differentiating between MBM from terrestrial animals and fishmeal, microscopy detected 0.5% of terrestrial MBM in feed in the presence of 5% fishmeal, but was less successful when the concentration of MBM from terrestrial animals was 0.1%. The animal-specific determination of MBM from mammals or, more specifically from either ruminants or pigs, by PCR showed poor results, as indicated by a high number of false-positive and false-negative results. The only PCR method that scored quite well was applied by a member of the organizer team of the study. Immunoassays scored much better than PCR, showing sufficient sensitivity but some deficiency in terms of specificity. The results also demonstrated that the reliable determination of MBM from ruminants has not been resolved, especially for low concentrations of MBM (0.1%) in feed. Comparison of the results for mammalian MBM from all methods indicated that, for control purposes, the immunoassay method, especially when applied as dipsticks, could be used as a rapid screening method combined with microscopy to confirm the positive samples. However, implementation of such a system would require that the immunoassays were previously validated to demonstrate that this approach is fit for purpose. The determination of ruminant or porcine PAPs by immunoassays was more difficult, partly because the MBM in this study contained about 50% bovine and porcine material, thereby reducing the target concentration level to 0.05%.  相似文献   
4.
5.
In the present study, different multivariate regression techniques have been applied to two large near-infrared data sets of feed and feed ingredients in order to fulfil the regulations and laws that exist about the chemical composition of these products. The aim of this paper was to compare the performances of different linear and nonlinear multivariate calibration techniques: PLS, ANN and LS-SVM. The results obtained show that ANN and LS-SVM are very powerful methods for non-linearity but LS-SVM can also perform quite well in the case of linear models. Using LS-SVM an improvement of the RMS for independent test sets of 10% is obtained in average compared to ANN and of 24% compared to PLS.  相似文献   
6.
Multiphase flows are critical components of many physical systems; however, numerical models of multiphase flows with large parameter gradients can be challenging. Here, two different numerical methods, volume of fluid (VOF) and smoothed particle hydrodynamics (SPH), are used to model the buoyant rise of isolated gas bubbles through quiescent fluids for a range of Bond and Reynolds numbers. The VOF is an Eulerian grid–based method, whereas the SPH is Lagrangian and mesh free. Each method has unique strengths and weaknesses, and a comparison of the two approaches as applied to multiphase phenomena has not previously been performed. The VOF and SPH simulations are compared, verified, and validated. Results using two-dimensional VOF and SPH simulations are similar to each other and are able to reproduce numerical benchmarks and experimental results for sufficiently large Morton and Reynolds numbers. It is also shown that at low Reynolds numbers, the two methods, SPH and VOF, diverge in the transient regime of the bubble rise. Regimes that require simulations capable of representing three-dimensional drag are identified as well as regimes in which results from VOF and SPH diverge.  相似文献   
7.
Near-infrared microscopy (NIRM) has been proved to be a powerful tool for the detection of banned meat and bone meal (MBM) in feed. The identification of MBM traces and its ability to differentiate animal from vegetable feed ingredients is based on the evaluation of near-infrared spectra obtained from individual particles present in the sample. This evaluation is supported by appropriate decision rules for the absorbances at specific wavelengths. Here we show that the method and the corresponding decision rules can be successfully transferred from the laboratory which constructed the decision rules to two independent laboratories that were not involved in the calibration process of the method. The analytical results from blind feed samples containing MBM (positive samples) and feed samples without MBM (negative samples) revealed a very good agreement between the three laboratories, thus demonstrating the transferability of the method.  相似文献   
8.
The aim of this work is to show new advances in the analytical methods developed in the frame of the ban of processed animal by-products in compound feed that is currently applied within the European Union. With this aim, studies to develop a quantitative near infrared microscopy (NIRM) approach have been undertaken in order to fulfil future requirements of European legislation like the introduction of tolerance levels that would require for official control purposes the availability of specific quantitative methods. The capabilities of the NIRM method have been improved; no sample preparation is required and the acquisition parameters are optimised. Both the gross and the fine fractions of the samples are considered; the reflexion mode was used to analyse the gross raw fraction and the transmission mode was chosen to analyse the fine raw fraction. Parameters for reflexion analyses were already fixed in our previous studies while those of transmission mode have been determined in the present study. Because particles are too small, it is difficult to mark them; spectra were collected using the mapping technique. Quantitative analyses have been carried out for different percentages of adulteration (0.5, 1, 2 and 5%). Results were depending on the particle size distribution of the feed and of the fish meal which led to experimental values of adulteration varying between 0.13–0.92%, 0.93–3.7%, 2.42–5.83% and 1.95–9.39% for theoretical percentages of adulteration equal to 0.5, 1, 2 and 5%, respectively. The established protocol with the key parameters proposed has to be considered for the development of an accurate method of quantification.  相似文献   
9.
The application of a fast program combined with the advantages of the iridium permanent modifier is proposed for trace element analysis of plant samples by electrothermal atomic absorption spectrometry (ETAAS). For two volatile elements (Cd, Pb) and two mid-refractory elements (Cr, Ni) it was demonstrated that coating of the platform or of the tube atomization area with Ir is an efficient means of improving the accuracy and precision of results. A detailed study of interference from individual main matrix components and from composite plant matrices has confirmed the usefulness of the whole approach. The validity of the method has been confirmed by analysis of eight reference plant materials.  相似文献   
10.
1 [2] [3] [4] 下一页 » 末  页»
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号