首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29篇
  免费   0篇
化学   19篇
晶体学   3篇
力学   1篇
物理学   6篇
  2023年   1篇
  2022年   1篇
  2018年   2篇
  2016年   1篇
  2015年   1篇
  2014年   2篇
  2013年   2篇
  2012年   1篇
  2011年   3篇
  2009年   4篇
  2008年   3篇
  2007年   1篇
  2005年   1篇
  2003年   2篇
  2002年   1篇
  1995年   1篇
  1986年   2篇
排序方式: 共有29条查询结果,搜索用时 15 毫秒
1.
The optimum conditions for the extractive spectrophotometric determination of dioxouranium(VI) with hexamethyleneiminecarbodithioate(HMICdt) have been established. Dioxouranium(VI) reacts with this ligand at pH 4.5 to form a yellowish-orange uncharged 12 metal-ligand complex which can be extracted by chloroform. The calibration graph was linear in the range of 1–20 g ml–1 of dioxouranium(VI) at 335 nm. The molar absorptivity of the extracted species is 5.952×103 l mol–1 cm–1 with Sandell's sensitivity of 0.04 g cm–2. The average of 10 determinations of dioxouranium was 49.75 g for the samples containing 50 g of U(VI) and the variation from the mean at 95% confidence limit was 49.75±0.5955.  相似文献   
2.
Acid-catalyzed polycondensation of phenol and crotonaldehyde results in soluble thermoplastic resins over a broad range of compositions. The thermal and curing behavior of the resins are found to vary markedly with the phenol to crotonaldehyde mole ratio and the purity of crotonaldehyde. Infrared analysis of the resins and their fractions separated by column chromatography indicates that all the resins are structurally similar. The number-average molecular weights of the resins fall in the range of 400 to 600. The resins from distilled crotonaldehyde exhibit higher molecular weights than those from crude crotonaldehyde. The thermal properties of the resins are comparable to the Novolak-type phenol-formaldehyde resins. The thermoplastic nature is retained even at higher fraction of crotonaldehyde, unlike for the conventional Novolak resins.  相似文献   
3.
Using femtosecond laser writing, optical waveguides were monolithically integrated into a commercial microfluidic lab-on-a-chip device, with the waveguides intersecting a microfluidic channel. Continuous-wave laser excitation through these optical waveguides confines the excitation window to a width of 12 microm, enabling high-resolution monitoring of the passage of different types of fluorescent analytes when migrating and being separated in the microfluidic channel by microchip capillary electrophoresis. Furthermore, we demonstrate on-chip-integrated waveguide excitation and detection of a biologically relevant species, fluorescently labeled DNA molecules, during microchip capillary electrophoresis. Well-controlled plug formation as required for on-chip integrated capillary electrophoresis separation of DNA molecules, and the combination of waveguide excitation and a low limit of detection, will enable monitoring of extremely small quantities with high spatial resolution.  相似文献   
4.
5.
We use direct femtosecond laser writing to integrate optical waveguides into a commercial fused silica capillary electrophoresis chip. High-quality waveguides crossing the microfluidic channels are fabricated and used to optically address, with high spatial selectivity, their content. Fluorescence from the optically excited volume is efficiently collected at a 90° angle by a high numerical aperture fiber, resulting in a highly compact and portable device. To test the platform we performed electrophoresis and detection of a 23-mer oligonucleotide plug. Our approach is quite powerful because it allows the integration of photonic functionalities, by simple post-processing, into commercial LOCs fabricated with standard techniques. Figure Femtosecond laser written waveguides can selectively excite fluorescence in a microfluidic channel of a commercial lab-on-a-chip. A compact scheme for on-chip detection by laser induced fluorescence is applied to capillary electrophoresis of a 23-mer Cy3-labeled oligonucleotide  相似文献   
6.
It is well known that when nanoparticles (NPs) are exposed to biological fluid, it results into formation of nanoparticle protein corona, which has been the subject of extensive studies for the development of targeted drug delivery. In this work, we demonstrated the dynamic light scattering, fluorescence, and UV-visible spectroscopy as quantitative and qualitative tools to monitor adsorption of BSA protein onto silver nanoparticles (AgNPs). The adsorption resulted in significant gradual increase in average hydrodynamic radius of BSA-AgNP corona from 24 to 35 nm and its attainment of equilibrium point (saturation) that correlated with albumin concentration enables condition for bound and unbound protein adsorption to be interpreted. Using DLS, the dissociation constant (KD) was obtained for soft corona to be 2.09?±?0.30 μM. The UV-visible and fluorescence spectroscopy results were correlated with DLS. Loss of percent helicity in secondary structure of adsorbed BSA was monitored in both coronas as compared to native protein. Both coronas were found to be biocompatible with RBC membrane. Further, the results of adsorption isotherm model were used to validate the multilayer formation of albumin protein on silver nanoparticles. The obtained results would be relevant in the drug design development for tumor-targeted therapy.
Graphical abstract ?
  相似文献   
7.
Low energy electrons (LEEs) are produced in copious amounts by the primary radiation used in radiation therapy. The damage caused to the DNA by these secondary electrons in the energy range 5-22 eV has been studied to understand their possible role in radiation induced damage. Electrons are irradiated on dried films of plasmid DNA (pQE30) and analysed using agarose gel electrophoresis. Single strand breaks (SSBs) induced by LEE to supercoiled plasmid DNA show resonance structures at 7, 12, and 15 eV for low doses and 6, 10, and ~18 eV at saturation doses. The present measurements have an overall agreement with the literature that LEEs resonantly induce SSBs in DNA. Resonant peaks in the SSBs induced by LEEs at 7, 12, and 15 eV with the lowest employed dose in the current study are somewhat different from those reported earlier by two groups. The observed differences are perhaps related to the irradiation dose, conditions and the nature of DNA employed, which is further elaborated.  相似文献   
8.
Solid thermoplastic resins were prepared by acid-catalyzed condensation of phenol and crotonaldehyde (both crude and distilled). The thermal and curing properties were compared with the conventional phenol-formaldehyde (PF) novolak resins. Phenol-crotonaldehyde (PC) resins were found to be thermoplastic even after curing with the crosslinking agent hexamethylenetetramine up to 160°C. This curing behavior was observed irrespective of the purity of the crotonaldehyde or the phenol-to-crotonaldehyde mole ratio in the resin. Postcuring of these resins at elevated temperatures yielded insoluble and infusible thermoset products. This unique thermal characteristic could lead to interesting processing possibilities for the resins. The technical feasibility of thermoplastic processing of the PC resins followed by postcure heat treatment for transforming the molded part into a thermoset has been demonstrated.  相似文献   
9.
The infrared spectra of 2,4 dimethylaniline have been recorded in the region 3600-100 cm−1. The Raman spectra with polarization measurements have been recorded and investigated for the first time in the region 3500-100 cm−1. New frequency assignments have been proposed assuming the molecule to possess an approximateC 2 symmetry. Fifty normal modes of the molecule, out of a possible fifty four modes, have actually been observed and assigned including twenty seven hitherto unreported frequencies. The observed spectral changes give evidence of the presence of an intermolecular hydrogen bonding of an N−H...N type, and suggest a solid-solid phase transition between 223 and 123 K in the molecule.  相似文献   
10.
Biological macromolecules evolve and function within intracellular environments that are crowded with other macromolecules. Crowding results in surprisingly large quantitative effects on both the rates and the equilibria of interactions involving macromolecules, but such interactions are commonly studied outside the cell in uncrowded buffers. The addition of high concentrations of natural and synthetic macromolecules to such buffers enables crowding to be mimicked in vitro, and should be encouraged as a routine variable to study. In this study, we propose to understand the changes in DNA character and its modulation in presence of macromolecules such as PEG with reference to binding parameters to amino acids using fluorescence enhancement.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号