首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   254篇
  免费   10篇
  国内免费   1篇
化学   193篇
晶体学   8篇
力学   2篇
数学   16篇
物理学   46篇
  2024年   7篇
  2023年   3篇
  2022年   14篇
  2021年   14篇
  2020年   12篇
  2019年   21篇
  2018年   11篇
  2017年   3篇
  2016年   12篇
  2015年   8篇
  2014年   15篇
  2013年   22篇
  2012年   20篇
  2011年   20篇
  2010年   12篇
  2009年   8篇
  2008年   9篇
  2007年   8篇
  2006年   7篇
  2005年   2篇
  2003年   3篇
  2002年   4篇
  1999年   1篇
  1995年   2篇
  1994年   3篇
  1992年   5篇
  1991年   4篇
  1990年   2篇
  1989年   5篇
  1984年   2篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1974年   1篇
  1973年   1篇
  1971年   1篇
排序方式: 共有265条查询结果,搜索用时 15 毫秒
1.
New series of cycloaliphatic poly(ester‐amide)s, poly(1,4‐cyclohexanedimethyleneterephthalate‐co‐1,3‐cyclohexanedimethylene terephthalamide), were synthesized through solution polymerization route. The compositions of ester/amide units in the copolymers were varied from 0 to 100% by varying the amount of 1,4‐cyclohexanedimethanol and 1,3‐cyclohexanebis(methylamine) in the feed. The structures of the polymers were confirmed by NMR and FTIR, and the molecular weights were determined by inherent viscosity. The composition analysis by NMR reveals that the reactivity of the diamine toward the acid chlorides is lowered than that of diol, which results in the formation of more ester content in the poly (ester‐amides). The thermal analysis indicate that the new poly(ester‐amide)s having less than 10 mol % of amide linkages are thermotropic liquid crystalline from 200 to 250 °C and a thread like nematic phases are observed under the polarizing microscope. WXRD studies suggest that the liquid crystalline domains promote the nucleation process in the polyester chains and increases the percent crystallinity of the poly(ester‐amide)s. The glass transition temperature of the copolymers initially increases with increase in amide units because of the presence of nematic phases and subsequently follows the Flory–Fox behavior. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 42–52, 2006  相似文献   
2.
3.
O. Divya 《Talanta》2007,72(1):43-48
Synchronous fluorescence spectroscopy (SFS) is a rapid, sensitive and nondestructive method suitable for the analysis of multifluorophoric mixtures. The present study demonstrates the use of SFS and multivariate methods for the analysis of petroleum products which is a complex mixture of multiple fluorophores. Two multivariate techniques principal component regression (PCR) and partial least square regression (PLSR) have been successfully applied for the classification of petrol-kerosene mixtures. Calibration models were constructed using 35 samples and their validation was carried out with varying composition of petrol and kerosene in the calibration range. The results showed that the method could be used for the estimation of kerosene in kerosene-mixed petrol. The model was found to be sensitive, detecting even 1% contamination of kerosene in petrol.  相似文献   
4.
A simple method for the preparation of enantiopure furo[2,3-b]pyrroles, a rare class of concave bicyclic nitrogen and oxygen heterocycle, in promising yield has been developed. The 3-substituted pyrrolidinediones prepared from (2S,3S)-tetrahydro-3-hydroxy-5-oxo-2,3-furandicarboxylic acid (Garcinia acid) have been cyclized diastereo as well as enantioselectively to furo[2,3-b]pyrroles. The cyclization follows Baldwin’s rule.  相似文献   
5.
Favipiravir finished dosage was approved for emergency use in many countries to treat SARS-CoV-2 patients. A specific, accurate, linear, robust, simple, and stability-indicating HPLC method was developed and validated for the determination of degradation impurities present in favipiravir film-coated tablets. The separation of all impurities was achieved from the stationary phase (Inert sustain AQ-C18, 250 × 4.6 mm, 5-μm particle) and mobile phase. Mobile phase A contained KH2PO4 buffer (pH 2.5 ± 0.05) and acetonitrile in the ratio of 98:2 (v/v), and mobile phase B contained water and acetonitrile in the ratio of 50:50 (v/v). The chromatographic conditions were optimized as follows: flow rate, 0.7 mL/min; UV detection, 210 nm; injection volume, 20 μL; and column temperature, 33°C. The proposed method was validated per the current International Conference on Harmonization Q2 (R1) guidelines. The recovery study and linearity ranges were established from the limit of quantification to 150% optimal concentrations. The method validation results were found to be between 98.6 and 106.2% for recovery and r2 = 0.9995–0.9999 for linearity of all identified impurities. The method precision results were achieved below 5% of relative standard deviation. Forced degradation studies were performed in chemical and physical stress conditions. The compound was sensitive to chemical stress conditions. During the study, the analyte degraded and converted to unknown degradation impurities, and its molecular mass was found using the LC–MS technique and established degradation pathways supported by reaction of mechanism. The developed method was found to be suitable for routine analysis of research and development and quality control.  相似文献   
6.
Controlling the morphology and composition of one-dimensional (1D) and two-dimensional (2D) assemblies of matter is essential to design and create nanostructures with exceptional material properties, for applications ranging from nanoelectronics to nanomedicine. Within this latter, a great interest is placed on assembling magnetoplasmonic nanostructures to enable multimodal biosensing and bioimaging for early diagnosis and prognosis of diseases. To date, the synthesis of such complex nanostructures is mostly relying on wet chemistry and templates. Herein, we employed a templateless physical method to generate FeAg-based anisotropic nanostructures, using a modified cluster source. Under tuned experimental conditions, we demonstrated the successful magnetic-assisted assembly of Fe nanoclusters (Fe NCs), to form stable and permanent branched Fe nanorods (Fe NRs), core@shell Fe@Ag-NRs, Fe nanosheets (Fe NSs), and Fe/Ag-NSs. This assembly is driven by the need to reduce their magnetic interaction energy on one hand and their overall surface energy on the other hand. When NCs and NRs are magnetically brought into intimate contact, they undergo a coalescence process, through the interfacial diffusion of the surface atoms, resulting in the formation of 1D and 2D nanostructures. For Fe@Ag NRs, the advantage conferred by the Ag shell is to protect Fe NRs from oxidation and prevent them from aggregation at the same time. The observed contrast reversal in Scanning Electron Microscopy (SEM) images of Fe NRs and Fe NSs is discussed.  相似文献   
7.
Journal of Cluster Science - Metal oxide nanoparticles (NPs) have gained attention in biomedicine due to their broad spectrum of applications, such as targeted drug delivery, their use as...  相似文献   
8.
A novel electrochemical sensor based on nickel-doped cobalt ferrite nanoparticles (Ni0.1Co0.9Fe2O4)-modified glassy carbon electrode (NCF/GCE) was presented for the sensitive detection of paracetamol. Experimental conditions such as pH, applied potentials and concentration were investigated using cyclic voltammetric and chronoamperometric techniques. The modified electrode exhibited excellent catalytic response towards the oxidation of paracetamol with good reproducibility. The overpotential for oxidation of paracetamol is decreased, and the current response enhanced significantly on the modified electrode in comparison with that of bare electrode. Linear calibration curve is obtained over the range 2 μM to 8,000 μM having a detection limit of 11 nM. The modified electrode facilitated the simultaneous detection of paracetamol, ascorbic acid, and dopamine with good reproducibility.  相似文献   
9.
Modification of [VO(OPri)3] with oximes in different molar ratios, yielded new class of vanadia precursors, [VO{OPri}3?n{L}n] {where, n = 1–3 and LH = C9H16C=NOH (1–3) and (CH3)2C=NOH (46)}.All the products are yellow in colour. (1) and (2) are liquid/viscous liquid, while others are solids. Molecular weight measurements of all these derivatives and the ESI-mass spectral studies of (1), (2), (3) and (5) indicate their monomeric nature. 1H and 13C{1H} NMR spectra suggest that the oximato moieties are monodentate in solution which was further confirmed by the 51V NMR signals, appeared in the region expected for tetra-coordinated oxo-vanadium atoms. On ageing, a disproportionation reaction occurs in (1) and some crystals appeared. Single crystal X-ray diffraction analyses of the crystals obtained from (1) as well as from (3) were found to be the same and indicate the presence of side-on {dihapto η 2-(N, O)} binding modes of the oximato ligands, leading to the formation of seven coordination environment around the vanadium atom. Thermogravimetric curve of (1) exhibits multi-step decomposition with the formation of V2O5 as the final product at ~850 °C. Sol–gel transformation of (3) yielded (a) VO2 sintered at 300 °C and (b) V2O5 at 600 °C. Similarly, sol–gel transformations of (1) and (2) yielded V2O5 (c) and (d) at 600 °C, respectively. Formation of monoclinic phase in (a) and orthorhombic phase in (b), (c) and (d) were confirmed by powder XRD patterns.  相似文献   
10.
Some oxime modified complexes of the type [Zr{OPri}4?n{L}n] {where, n = 1–4 and LH=(CH3)2C=NOH (1–4) and C9H16C=NOH (5–8)} have been synthesized by the reaction of [Zr(OPri)4·PriOH] with oximes, in anhydrous refluxing benzene. These synthesized complexes were characterized by elemental analyses, molecular weight measurements, ESI-mass, FT-IR and NMR (1H and 13C{1H}) spectral studies. The ESI-mass spectral studies indicate dimeric nature for [Zr{OPri}2{ONC(CH3)2}2] (2), [Zr{OPri}3{ONC10H16}] (5) and [Zr{OPri}{ONC10H16}3] (7) and monomeric nature for [Zr{ONC10H16}4] (8). Oximato ligands appear to bind the zirconium in side on manner in all the complexes. Thermogravimetric curves of (2) and (8) exhibit multi-step decomposition with the formation of ZrO2, under nitrogen atmosphere. Sol–gel transformations of precursors (5), (6), (7) and (8) in organic medium, yielded nano-sized tetragonal phase of zirconia samples (a), (b), (c) and (d), respectively, on sintering at ~600 °C. All these samples were characterized by Powder XRD patterns and EDX analyses. Surface morphologies of these samples were investigated by SEM images.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号