首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
化学   4篇
物理学   4篇
  2012年   1篇
  2001年   3篇
  2000年   1篇
  1999年   3篇
排序方式: 共有8条查询结果,搜索用时 31 毫秒
1
1.
NG Kelkar  BK Jain 《Pramana》2001,57(2-3):389-397
We report on a study of the proton induced hyperon production reactions. We discuss the theoretical efforts made towards understanding the existing data and the uncertainties involved in the calculations. Our recent calculations of the missing mass spectra for the ppK + Λp reaction which involve a proper coupled channel treatment of the final state Λp interaction are presented. Significant differences in the results using different models of the hyperon-nucleon interaction are found.  相似文献   
2.
We have investigated the fast ethylamine gas sensing of 2-chloro-3,5-dinitrobenzotrifluoride(CDBF) loaded poly(acrylonitrile) nanofiber based on an intermolecular charge-transfer complexation.Reversible response and recovery were achieved using alternating gas exposure.This system shows a fast ethylamine gas sensing within 0.4 s.  相似文献   
3.
The concerned azo ligands are 2-(phenylazo)pyridine (HL) and 2-((p-chlorophenyl)azo)pyridine (ClL). The reaction of KReO4 with HL in hot concentrated HCl is attended with metal reduction and ligand chlorination affording the oxo complex ReVOCl3(ClL), 2, which furnishes ReIII(OPPh3)Cl3(ClL), 3, upon treatment with PPh3. Aromatic amines, ArNH2, convert 2 to the imido complex ReV(NAr)Cl3(ClL), 5, and the unusual oxo-imido dimer (ClL)-Cl2(O)ReVOReV(NAr)Cl2(ClL), 7. The complex ReIII(OPPh3)Cl3(HL), 4, has been generated from ReVOCl3(PPh3)2 and HL. Reaction of 4 with HL has yielded ReV(NPh)Cl3(HL), 6, via azo splitting. The complexes have been characterized with the help spectral, magnetic, and X-ray structural data (2, 3, 5c (Ar = pClC6H4) and 7.CH2Cl2 (Ar = pMeC6H4)). In 2, 3, and 5c the ReCl3 fragment is meridionally disposed, and in 7 the ReCl2 fragments have a trans configuration. The Re-O(oxo) bond, 1.663(6) A, in 2 and Re-N(imido) bond, 1.719(5) A, in 5c are triple bonds. The corresponding bonds are slightly longer in 7 wherein the (O)Re(1)-O(2)-Re(2)(NAr) bridge is angular (151.0(5) degrees) and unsymmetrical, the Re(1)-O(2) bond, 1.849(7) A, having a large double-bond character (Re(2)-O(2), 1.954(7) A). In effect, cis-ReVO2 acts as a monodentate oxygen ligand toward ReVNAr in 7. In all cases the pyridine nitrogen binds trans to the oxo, OPPh3, or NAr donor. Bond length data are consistent with the presence of substantial d(Re)-pi*(azo) back-bonding. In acetonitrile solution the complexes display electrochemical one-electron metal (ReVI/ReV or ReIV/ReIII) and azo redox. The imido ligand in 5 stabilizes the ReVI state (E1/2 approximately 1.4 V) better than the oxo ligand in 2 (approximately 1.9 V). Parallely it is more difficult to reduce the azo group in 5 (approximately -0.4 V) than in 2 (approximately 0.0 V). In 7 the metal (approximately 1.0 V) and azo (approximately -0.4 V) couples correspond to the imido and oxo halves, respectively. The significantly higher (by 0.2-0.6 V) metal reduction potentials of the azopyridine compared to pyridine-2-aldimine complexes is ascribed to the superior pi-acidity and electron-withdrawing character of the azo function relative to the aldimine function. This also makes the transfer of the ReVO oxygen function much more facile under azopyridine chelation as in 2. For the same reason, ReOCl3(PPh3)2 reacts with HL affording only 4 while it reacts with pyridine-2-aldimines furnishing oxo species. Crystal data for the complexes are as follows: 2, empirical formula C11H8Cl4N3ORe, crystal system triclinic, space group P1, a = 7.118(4) A, b = 8.537(4) A, c = 13.231(9) A, alpha = 79.16(5) degrees, beta = 78.03(5) degrees, gamma = 70.96(4) degrees, V = 737.2(7) A3, Z = 2; 3, empirical formula C29H23Cl4N3OPRe, crystal system monoclinic, space group P2(1)/n, a = 11.264(2) A, b = 15.221(3) A, c = 17.628(4) A, beta = 94.21(3) degrees, V = 3014(1) A3, Z = 4; 5c, empirical formula C17H12Cl5N4Re, crystal system triclinic, space group P1, a = 9.683(3) A, b = 10.898(3) A, c = 11.522(3) A, alpha = 63.67(2) degrees, beta = 71.24(2) degrees, gamma = 86.79(2) degrees, V = 1026(1) A3, Z = 2; 7.CH2Cl2, empirical formula C30H25Cl8N7O2Re2, crystal system triclinic, space group P1, a = 12.522(6) A, b = 12.857(8) A, c = 13.182(7) A, alpha = 67.75(4) degrees, beta = 88.30(4) degrees, gamma = 82.09(4) degrees, V = 1945(2) A3, Z = 2.  相似文献   
4.
5.
BK Srivastava 《Pramana》2001,57(2-3):301-313
A systematic analysis of the multifragmentation (MF) in fully reconstructed events from 1A GeV Au, La and Kr collisions with C has been performed. Detailed comparisons of the various fragment properties are presented as a function of excitation energy, E*th. The charged particle multiplicity from MF stage shows a saturation beyond E*th ∼ 8 MeV/nucleon for Kr. The universal behavior of intermediate mass fragment yields and of the size of the largest fragment is observed only for Au and La when scaled with size of the system. The Kr data are found to lack this property. Moments of the fragment size distribution show that the Kr MF is different than the MF of Au and La. A power law behavior is observed for Au and La with exponent τ>2, while for Kr τ<2. The results are compared with the statistical multifragmentation model (SMM). A single value of all the parameters of the model fits the data for all the three systems. The breakup of Au and La is consistent with a continuous phase transition. The data indicate that both E*th and the isotope ratio temperature T Hc-DT decrease with increase in system size at the critical point. The breakup temperature obtained from SMM also shows the same trend as seen in data. This trend is attributed primarily to the increasing Coulomb energy with finite size effects playing a smaller role. The percolation and Ising model studies for finite size neutral matter show behavior which is opposite to the one seen in the present work. EOS Collaboration  相似文献   
6.
The concerned diphosphines are Ph2P(CH2)nPPh2 (1), abbreviated PnP, and the ReVO reagents are ReOCl3L (2) and ReOCl3L' (3), where L and L' are the azopyridine and pyridine-imine ligands p-ClC6H4N=NC5H4N and p-MeC6H4N=CHC5H4N, respectively. One atom transfer from 2 to 1 has afforded Re(OPnP)Cl3L (4a, n = 1; 4b, n = 2; 4c, n = 3). Of these 4b and 4c are stable, but 4a undergoes spontaneous isomerization to Re(PlPO)Cl3L (5) in solution. Two-atom transfer studied with both 2 and 3 has afforded binuclear LCl3Re(OPnPO)ReCl3L (8a, n = 2; 8b, n = 3) and L'Cl3Re(OPnPO)ReCl3L' (9a, n = 2; 9b, n = 3) for n = 2, 3 and mononuclear Re(OP1PO)Cl3L (11) and Re(OP1PO)Cl3L' (12) for n = 1. The mixed system L'Cl3Re(OP2PO)ReCl3L (10) has been prepared from 3 and 4b. The complex Re(PPh3)Cl3L (7a) is furnished by the reaction of Re(OPPh3)Cl3L (6a) or 4b or 11 with PPh3. The species have been characterized with the help of spectral, electrochemical, and X-ray structural data. All the complexes have mer geometry except 5 and 7a, which have fac geometry. The latter is best suited for concurrent Re-N and Re-P back-bonding. Variable-temperature rate data of the reaction 4a-->5 are consistent with an intramolecular strongly associative transition state (delta S++, -22.6 eu) in which the dangling phosphine function lies close to the metal. Two-atom transfer to P1P is believed to proceed via a transient binuclear intermediate which undergoes cleavage at one end due to steric crowding, affording 11 and 12. Crystal data for the complexes are as follows: 5.1.5 C6H6, empirical formula C45H39Cl4N3OP2Re, crystal system triclinic, space group P1, a = 10.034(2) A, b = 10.737(2) A, c = 20.357(4) A, alpha = 89.38(3) degrees, beta = 87.79(3) degrees, gamma = 80.22(3) degrees, V = 2159.7(7) A3, Z = 2; 7a.CH2Cl2, empirical formula C30H25Cl6N3PRe, crystal system monoclinic, space group P2(1)/n, a = 11.695(6) A, b = 17.745(7) A, c = 15.459(9) A, beta = 100.94(5) degrees, V = 3150(3) A3, Z = 4; 9a, empirical formula C52H48Cl6N4O2P2Re2, crystal system monoclinic, space group C2/c, a = 19.769(12) A, b = 12.864(6) A, c = 22.20(2) A, beta = 101.76(6) degrees, V = 5530(6) A3, Z = 4; 11, empirical formula C36H30Cl4N3O2P2Re, crystal system monoclinic, space group I2/a, a = 16.866(6) A, b = 12.583(6) A, c = 34.78(2) A, beta = 99.22(4) degrees, V = 7285(7) A3, Z = 8.  相似文献   
7.
VK Sharma  BK Chikara 《Pramana》1999,53(4):707-725
The d + d, t + p and h + n relative wavefunctions and their asymptotic normalizations are considered in the framework of the generator coordinate method (GCM) and compared with ATMS (amalgamation of two-body correlation into multiple scattering processes) method which used the realistic Reid soft core interaction. The asymptotic normalization of relative wavefunctions provide various coupling constants, the cluster probability amplitude (the so-called Z 1/2-factor) and matter RMS radii. These wavefunctions are also used to obtain 4He − dd, 4He − tp and 4He − hn vertex functions in the virtual decay of 4He. The extrapolation of vertex functions for negative values of q 2 upto the corresponding poles provide the vertex constants which are comparable with other estimates. It is noticed that in GCM the coupling constants C 2 for 4He − dd vertex is less than 2 as has been obtained in the forward dispersion relation technique.  相似文献   
8.
Measurement of elastic and quasielastic reaction cross sections were done in 16O + 118Sn system at two different energies above the barrier. Attempts are being made to understand the results in the framework of coupled reaction channel model.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号