首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
化学   9篇
  2021年   1篇
  2019年   2篇
  2017年   1篇
  2015年   1篇
  2013年   1篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
排序方式: 共有9条查询结果,搜索用时 15 毫秒
1
1.
The study reports the preparation of CoFe2O4/SiO2 nanocomposites by a new modified sol–gel method starting from cobalt nitrate, iron nitrate, and diols: 1,2-ethanediol (EG), 1,3-propanediol (1,3PG), and tetraethylorthosilicate (TEOS), for final compositions of 30 %CoFe2O4/70 %SiO2 and 50 %CoFe2O4/50 %SiO2. The method is based on the formation of a Co(II), Fe(III)—carboxylate precursors mixture, during the redox reaction between the NO 3 ? ion and the diol (~140 °C) within the silica gels. The thermal decomposition of these complex combinations takes place at ~300 °C leading to the corresponding amorphous metal oxides within the pores of the hybrid gels. Depending on the subsequent thermal treatment, CoFe2O4 can be obtained as single phase or in a mixture with Co2SiO4. The CoFe2O4 crystallites sizes are in the nanometer range (3–10 nm). The obtained nanocomposites have a hard magnet behavior, as a result of the high anisotropy of CoFe2O4 having large hysteresis cycles.  相似文献   
2.
3.

This paper presents the thermal behavior of Co, Ni and Fe succinates obtained by sol-gel synthesis using Co(II), Ni(II) and Fe(III) nitrates, 1,4-butanediol and tetraethyl orthosilicate as reactants. The thermal analysis revealed the formation of succinates at 413–453 K and their decomposition to ferrites at 503–623 K. The rate constants for the decomposition of succinates to ferrites, calculated using the isotherms at 473, 523, 573 and 623 K, were used to determine the activation energy of each ferrite (NiFe2O4, Ni0.3Co0.7Fe2O4, Ni0.7Co0.3Fe2O4 and CoFe2O4) embedded in the silica matrix. By increasing the Ni content in the mixed Ni–Co ferrites, the activation energy decreases from 13.530 to 1.944 kJ mol?1. The formation and decomposition of succinate precursors and the formation of silica matrix were confirmed by FT-IR spectroscopy, while the formation of CoFe2O4 and NiFe2O4 single-phases embedded in the silica matrix was confirmed by X-ray diffraction analysis. The nanocrystallites size decreases from 31.7 (CoFe2O4) to 18.5 nm (NiFe2O4). The optical band gap of mixed Co–Ni ferrites was significantly higher than that corresponding to CoFe2O4. The photocatalytic activity of the samples was evaluated against Rhodamine B under visible light. All the samples have photocatalytic activities, the best performance being obtained in the case of Ni0.7Co0.3Fe2O4.

  相似文献   
4.
The paper presents a study on the preparation of Co2SiO4/SiO2 nanocomposites by a new modified sol–gel method. We have prepared gels starting from tetraethylorthosilicate (Si(OC2H5)4), cobalt nitrate Co(NO3)2·6H2O and some diols: ethylene glycol (C2H6O2), 1,2propanediol (C3H8O2) and 1,3propanediol (C3H8O2), for a final composition: 30% CoO/70% SiO2. During the heating of the gels at 140 °C, a redox reaction takes place between NO3 ions and diol with formation of some carboxylate anions. These carboxylate anions react with the Co(II) ions to form coordination compounds embedded in silica matrix, as evidenced by FT-IR spectrometry and thermal analysis. These Co(II) coordinative compounds thermally decompose in the range 250–300 °C to the corresponding oxides: CoO and/or Co3O4 inside the matrices pores. When CoO results, it reacts with SiO2 at low temperature leading to Co2SiO4, which crystallizes at 700 °C. XRD patterns of the samples annealed at temperatures lower than 700 °C were characteristic to amorphous phases. The samples annealed at temperatures ≥700 °C, contain Co2SiO4 (olivine) as unique crystalline phase inside the amorphous silica matrix, according to XRD patterns. As evidenced by TEM images, Co2SiO4 nanoparticles are homogenously dispersed inside the silica matrix.  相似文献   
5.
The thermal behavior of CoxFe3?xO4/SiO2 nanocomposites obtained by direct synthesis starting from nonahydrate ferric nitrate and hexahydrate cobalt nitrate in different ratios with and without the addition of 1,4-butanediol was studied. For the synthesis of CoxFe3?xO4 (x = 0.5–2.5) dispersed in the silica matrix a wide Co/Fe molar ratio was used. The decomposition processes, formation of crystalline phases, gases evolvement and mass changes during gels annealing at different temperatures were assessed by thermal analysis. The absence of succinate precursor and a low mass loss were observed in the case of the gel obtained in the absence of 1,4-butanediol. In case of gels obtained using a stoichiometric ratio of Co/Fe, no clear delimitation between Co and Fe succinates was observed, while for samples with a Fe or Co excess, the formation of the two succinates was observed. The evolution of the crystalline phase after annealing (673, 973 and 1273 K) investigated by X-ray diffraction analysis and Fourier transformed infrared spectrometry revealed that in samples with Fe excess, stoichiometric Fe/Co ratio or low Co excess, the cobalt ferrite (CoFe2O4) was obtained as a single phase, while in samples with higher cobalt excess, olivine (Co2SiO4) as a main phase, cobalt oxide and CoFe2O4 as secondary phases were obtained after annealing at 1273 K. The SEM images confirmed the nanoparticles embedding in the silica matrix, while the TEM and X-ray diffraction data showed that the obtained nanoparticles’ size was below 10 nm in most samples.  相似文献   
6.
Journal of Thermal Analysis and Calorimetry - The paper presents the synthesis of ZnFe2O4/SiO2, NiFe2O4/SiO2, Ni0.4Zn0.6Fe2O4/SiO2 and Ni0.4Zn0.6Fe2O4/PVA-SiO2 nanocomposites by a modified...  相似文献   
7.
In order to obtain cobalt oxides nanoparticles we have used the thermal decomposition of some carboxylate type precursors. These precursors were obtained by the redox reaction between cobalt nitrate and ethylene glycol, either bulk or dispersed in silica matrix. The redox reaction takes place by heating the Co(NO3)2·6H2O-C2H6O2 solution or the Si(OC2H5)4-Co(NO3)2·6H2O-C2H6O2 gels. Thermal analysis of the Co(NO3)2·6H2O-C2H6O2 solution and Si(OC2H5)-Co(NO3)2·6H2O-C2H6O2 gels allowed us to establish the optimal value for the synthesis temperature of the carboxylate precursors. By fast heating of the solution Co(NO3)2·6H2O-C2H6O2, the redox reaction is immediately followed by the decomposition of the precursor, which represents an autocombustion process. The product of this combustion contains CoO as unique phase. We have obtained a mixture of CoO and Co3O4 by annealing the synthesized carboxylate compounds for 2 h at 400°C. With longer annealing time (6 h), we have obtained Co3O4 as unique phase. The XRD study of the crystalline phases resulted by thermal decomposition of the precursors embedded in silica matrix, showed that the formation of Co2SiO4 and Co3O4, as unique phases, depends on the thermal treatment.  相似文献   
8.
This paper presents a study for the preparation of CoxFe3−xO4 (x = 0.02, 0.2, 0.5, 0.8, 1.0, 1.1, 1.5) nanoparticles, starting from metal nitrates: Co(NO3)2·6H2O, Fe(NO3)3·9H2O and ethylene glycol (C2H6O2). By heating the solutions metal nitrates-ethylene glycol, the redox reaction took place between the anion NO3 and OH–(CH2)2–OH with formation of carboxylate anions. The resulted carboxylate anions reacted with Co(II) and Fe(III) cations to form coordinative compounds which are precursors for cobalt ferrite. XRD and magnetic measurements have evidenced the formation of cobalt ferrite for all studied molar ratios. The average diameter of the cobalt ferrite crystallites was estimated from XRD data and showed values in the range 10–20 nm. The crystallites size depends on the annealing temperature. The magnetization of the synthesized samples depends on the molar ratio Co/Fe and on the annealing temperature.  相似文献   
9.

Four cocoa powder varieties processed in different European countries (Germany, Poland, Romania and Bulgaria) were subjected to physicochemical, phytochemical and microbiological analysis. The cocoa powders were extensively characterized by recording their pH and titratable acidity, respectively, the polyphenols and also the methylxantine derivatives content (theobromine and caffeine). The cocoa powders pH ranged between 5.37 and 8.23, while the titratable acidity was 3.2–4.3 miliequivalent (100 g)?1 of cocoa powder. Their total polyphenols content ranged between 0.986?÷?2.003 g GAE/(100 g)?1. The methylxanthine derivatives (theobromine and caffeine) were analyzed by the HPLC method and ranges of 0.992–1.174% for theobromine and 0.096–0.369% for caffeine were obtained. Thermal analysis (TG–DTA) combined with mass spectrometry (MS) elucidated the decomposition processes and the volatile substances (CO, CO2, H2O, NO, theobromine, caffeine). The thermal analysis revealed transformations in the cocoa powders composition: drying and water loss; decomposition of pectic polysaccharides; lipids, amino acids and proteins, crystalline phase transformations and carbonizations. The microbiological analysis tested the degree of preservation of the cocoa powders across time, specifically immediately after unwrapping and after 14 days.

  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号