首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   45篇
  免费   0篇
化学   20篇
晶体学   3篇
力学   10篇
数学   1篇
物理学   11篇
  2022年   2篇
  2021年   2篇
  2020年   4篇
  2018年   4篇
  2017年   1篇
  2016年   4篇
  2015年   2篇
  2014年   3篇
  2013年   3篇
  2012年   2篇
  2011年   1篇
  2010年   1篇
  2009年   1篇
  2008年   2篇
  2006年   1篇
  2005年   2篇
  2004年   1篇
  2002年   1篇
  2001年   1篇
  1995年   1篇
  1991年   2篇
  1989年   1篇
  1983年   2篇
  1981年   1篇
排序方式: 共有45条查询结果,搜索用时 15 毫秒
1.
2.
Heterogeneous activation of oxone using Co3O4   总被引:3,自引:0,他引:3  
This study explores the potential of heterogeneous activation of Oxone (peroxymonosulfate) in water using cobalt oxides. Two commercially available cobalt oxides, CoO and Co3O4 (CoO.Co2O3) were tested for the activation of peroxymonosulfate and the consequent oxidation of 2,4-dichlorophenol (2,4-DCP) via a sulfate radical mechanism. Both systems, CoO/Oxone and Co3O4/Oxone, were tested at acidic and neutral pH and compared with the homogeneous Co(NO3)2/Oxone. The activity of these systems was evaluated on the basis of the induced transformation of 2,4-DCP as well as the dissolution of cobalt occurred after 2 h of reaction. It was observed that only Co3O4 activates peroxymonosulfate heterogeneously, with its heterogeneity being more pronounced at neutral pH. Both CoO and Co2O3 contained in Co3O4 might be responsible for the observed heterogeneity, and the relative mechanisms are further discussed here. To our knowledge, this is perhaps the first study that documents the heterogeneous activation of peroxymonosulfate with cobalt, the best-known catalyst-activator for this inorganic peroxide.  相似文献   
3.
4.
5.
This work reports a new approach for the determination of phenolic compounds based on their interaction with citrate-capped rhodium nanoparticles. Phenolic compounds (i.e., catechins, gallates, cinnamates, and dihydroxybenzoic acids) were found to cause changes in the size and localized surface plasmon resonance of rhodium nanoparticles, and therefore, give rise to analyte-specific spectral and color transitions in the rhodium nanoparticle suspensions. Upon reaction with phenolic compounds (mainly dithydroxybenzoate derivatives, and trihydroxybenzoate derivatives), new absorbance peaks at 350 nm and 450 nm were observed. Upon reaction with trihydroxybenzoate derivatives, however, an additional absorbance peak at 580 nm was observed facilitating the speciation of phenolic compounds in the sample. Both absorbance peaks at 450 nm and 580 nm increased with increasing concentration of phenolic compounds over a linear range of 0–500 μM. Detection limits at the mid-micromolar levels were achieved, depending on the phenolic compound involved, and with satisfactory reproducibility (<7.3%). On the basis of these findings, two rhodium nanoparticles-based assays for the determination of the total phenolic content and total catechin content were developed and applied in tea samples. The obtained results correlated favorably with commonly used methods (i.e., Folin-Ciocalteu and aluminum complexation assay). Not the least, the finding that rhodium nanoparticles can react with analytes and exhibit unique localized surface plasmon resonance bands in the visible region, can open new opportunities for developing new optical and sensing analytical applications.  相似文献   
6.
7.
To predict inviscid transonic flow through turbomachinery blade rows, the exact transonic potential flow equation is solved on a mesh constructed from small area elements. A transformation is introduced through which distorted squares of the physical plane are mapped into computational squares. Two sets of overlapping elements are used; while the thermodynamic properties are calculated at the primary element centres, the flux balance is established on the secondary elements. For transonic flows an artificial compressibility term (upwind density gradient) is added to density in order to produce the desired directional bias in the hyperbolic region. while the entropy does not increase across mass conservative shock jump regions. Comparisons withexperiments and with other numerical and analytical solutions for various turbomachinery configurations show that this approach is comparatively accurate, reliable, and fast.  相似文献   
8.
9.
The dielectric properties of the glassy telluria have been modeled and studied via the ab initio calculations of the linear- and hyper-polarizabilities of chain-like (TeO2)n clusters. By using the localized molecular orbitals approximation (GAMESS program), it is shown that their linear polarizability is mainly associated with the tellurium atom lone pairs and with the Te–O–Te bridges, whose contributions are comparable. On contrary, the bridge contributions unequivocally dominate the hyperpolarizability value (providing 75% of this) whereas the role of the lone pair on tellurium atoms is minimal (5%). The same estimations can be obtained for the relevant characteristics of TeO2 glass.  相似文献   
10.
 Unsaturated polyesters are synthesized by means of polyesterification, often with catalysts like strong acids, metal oxides and metal-organic salts. Most often, the catalysts used cannot be separated from the bulk of the polyester. Also, some organic or inorganic additives – called fillers – which are used with the polyester in order to decrease cost, affect the curing of the polyester. In this work the effect of residual catalyst on the curing of unsaturated polyester is studied. Unsaturated polyesters were prepared using propylene glycol with a 10% molar excess over stoichiometry and a mixture of dicarboxylic acids, namely maleic acid (unsaturated) adipic acid (saturated) and phthalic anhydride (saturated) at a molar ratio 1:2:2. Lead dioxide, p-toluenesulfonic acid and zinc acetate were used as catalysts, at 0.1% w/w. After the polyesterification, the polymers were diluted with styrene at a proportion of 100:30 w/w. The resins were cured by using MEKP (methylethylketone peroxide) as initiator and CoNp (cobalt naphthenate) as accelerator. Catalysts affect the final color of the polyester. The kinetics of curing of the resins was studied by DSC analysis based on the exothermic peak due to the double bonds breaking to give crosslinked macromolecules. The heat released ΔH is decreased by the presence of catalyst, while activation energy, the frequency factor and the order of reaction are increased.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号