首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   1篇
化学   5篇
  2022年   1篇
  2020年   1篇
  2018年   1篇
  2016年   2篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
Kinetics and Catalysis - The rate constant of the reaction of methano- and cyclopentenofullerenes (С60R) with a peroxyl radical (PhCH(OO?)CH3) was measured in a model system of the...  相似文献   
2.
We have investigated the stepwise addition of four growing methyl methacrylate (MMA) radicals to C60 fullerene, taking into account all possible types of the formed adducts. This reaction set is a reliable approximation for understanding the MMA polymerization process in the presence of C60 fullerene. We have analyzed the structures of the fullerene-MMA adducts and energy parameters of their formation (heat effects and activation enthalpies). We found that up to three MMA growing radicals are favorably attached to C60 as the fullerene-MMA trisadduct is a stable radical of the allyl type. It is inactive for further radical addition, and the elimination of the hydrogen atom from the growing MMA radical becomes preferable. The effects of steric factors and structures of the products of multiple growing MMA radical additions to C60 on the radical polymerization of MMA in the presence of C60 fullerene are considered.  相似文献   
3.
The quantum-chemical simulation of possible reactions occurring at the initial stage of the free-radical polymerizations of styrene and methyl methacrylate in the presence of fullerene C60 is performed. The reactions of interaction between initiating and model short-chain growing radicals containing from one to three monomer units with fullerene are considered. It is shown that, at the initial stage of styrene polymerization, the addition of short-chain growing radicals to fullerene predominates (with respect to the reaction of chain propagation). In the case of methyl methacrylate polymerization in the presence of fullerene C60, the induction period is absent because of a higher probability of the initiation and chain propagation reactions (compared with the chain-termination reaction of short growing poly(methyl methacrylate) chains on fullerene C60). The formation of bis- and trisadducts of fullerene C60 with short-chain styrene and methyl methacrylate growing radicals is analyzed. The quantum-chemical simulation results are confirmed by electron spectroscopy and ESR studies.  相似文献   
4.
It has been demonstrated experimentally and theoretically that the essentially different inhibiting effects of fullerene C60 on the initial stage of the polymerizations of styrene and methyl methacrylate (including complete hampering of styrene polymerization throughout a long induction period) are of common kinetic nature. The difference arises from the competition between C60 and the monomer not for initiating radicals but for radicals originating from the monomer; that is, the difference stems from the competition between the chain propagation reactions and the termination reactions on fullerene molecules. As a consequence, the further development of the process is determined by the relative reactivities of the radicals toward C60 and towards their parent monomers.  相似文献   
5.
Modeling of the addition of various radicals to C60 fullerene is currently an active research area. However, the radicals considered are not able to adequately model polymeric radicals. In this work, we have performed a theoretical study of the possible reactions of C60 fullerene with 1‐n‐phenylpropyl radicals, which are used to model polystyrene radicals. Several possible ways of subsequent addition of up to four 1‐phenylpropyl radicals to C60 have been analyzed, the structures of the intermediates have been defined and thermal properties, such as the activation enthalpies of the corresponding reactions, have been calculated using density functional theory with the approximation of PBE/3z. It is shown that the topology of the spin density distribution on the fullerenyl radical causes regioselectivity for further radical addition. According to the energetic characteristics of the reactions, we assume the possibility of formation of products of one‐, two‐, three‐, and four‐ addition of the growth radical to the fullerene core in radical polymerization of styrene in the presence of C60 fullerene. © 2016 Wiley Periodicals, Inc.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号