首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2019篇
  免费   80篇
  国内免费   16篇
化学   1331篇
晶体学   76篇
力学   54篇
数学   249篇
物理学   405篇
  2023年   21篇
  2022年   50篇
  2021年   53篇
  2020年   54篇
  2019年   42篇
  2018年   45篇
  2017年   52篇
  2016年   76篇
  2015年   59篇
  2014年   88篇
  2013年   150篇
  2012年   138篇
  2011年   154篇
  2010年   71篇
  2009年   72篇
  2008年   74篇
  2007年   90篇
  2006年   91篇
  2005年   72篇
  2004年   73篇
  2003年   65篇
  2002年   55篇
  2001年   27篇
  2000年   17篇
  1999年   23篇
  1998年   11篇
  1997年   10篇
  1996年   15篇
  1995年   12篇
  1994年   16篇
  1993年   16篇
  1992年   14篇
  1991年   12篇
  1990年   12篇
  1989年   15篇
  1988年   10篇
  1987年   15篇
  1986年   10篇
  1985年   13篇
  1984年   17篇
  1983年   11篇
  1982年   11篇
  1981年   15篇
  1980年   28篇
  1979年   18篇
  1978年   16篇
  1977年   16篇
  1976年   20篇
  1975年   7篇
  1957年   6篇
排序方式: 共有2115条查询结果,搜索用时 31 毫秒
1.
Chromatographia - We developed a simple, rapid, ecological RP-HPLC method for the estimation of Pitavastatin (PIT), Fenofibrate (FEN), and their impurities in a novel fixed dose combination. We...  相似文献   
2.
Seven new copper(II) complexes of type [Cu(A)(L)]?H2O (A = sparfloxacin, ciprofloxacin, levofloxacin, gatifloxacin, pefloxacin, ofloxacin, norfloxacin; L = 5‐[(3‐chlorophenyl)diazenyl]‐4‐hydroxy‐1,3‐thiazole‐2(3H)‐thione) were synthesized and characterized using elemental and thermogravimetric analyses, and electronic, electron paramagnetic resonance (EPR), Fourier transform infrared and liquid chromatography–mass spectroscopies. Tetrahedral geometry around copper is assigned in all complexes using EPR and electronic spectral analyses. All complexes were investigated for their interaction with herring sperm DNA utilizing absorption titration (Kb = 1.27–3.13 × 105 M?1) and hydrodynamic volume measurement studies. The studies suggest the classical intercalative mode of DNA binding. The cleavage reaction on pUC19 DNA was monitored by agarose gel electrophoresis. The results indicate that the Cu(II) complexes can more effectively promote the cleavage of plasmid DNA. The superoxide dismutase mimic activity of the complexes was evaluated by nitroblue tetrazolium assay, and the complexes catalysed the dismutation of superoxide at pH = 7.8 with IC50 values in the range 0.597–0.900 μM. The complexes were screened for their in vitro antibacterial activity against five pathogenic bacteria. All the complexes are good cytotoxic agents and show LC50 values ranging from 5.559 to 11.912 µg ml?1. All newly synthesized Cu(II) complexes were also evaluated for their in vitro antimalarial activity against Plasmodium falciparum strain (IC50 = 0.62–2.0 µg ml?1). Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
3.
Kumari  Nitu  Mohan  Nishith 《Nonlinear dynamics》2020,100(1):763-784
Nonlinear Dynamics - In the present work, we have studied a diffusive tritrophic food chain model in which the species at each trophic level interact in accordance with Crowley–Martin...  相似文献   
4.
5.
The serine protease, DegP exhibits proteolytic and chaperone activities, essential for cellular protein quality control and normal cell development in eukaryotes. The P. falciparum DegP is essential for the parasite survival and required to combat the oscillating thermal stress conditions during the infection, protein quality checks and protein homeostasis in the extra-cytoplasmic compartments, thereby establishing it as a potential target for drug development against malaria. Previous studies have shown that diisopropyl fluorophosphate (DFP) and the peptide SPMFKGV inhibit E. coli DegP protease activity. To identify novel potential inhibitors specific to PfDegP allosteric and the catalytic binding sites, we performed a high throughput in silico screening using Malaria Box, Pathogen Box, Maybridge library, ChEMBL library and the library of FDA approved compounds. The screening helped identify five best binders that showed high affinity to PfDegP allosteric (T0873, T2823, T2801, RJC02337, CD00811) and the catalytic binding site (T0078L, T1524, T2328, BTB11534 and 552691). Further, molecular dynamics simulation analysis revealed RJC02337, BTB11534 as the best hits forming a stable complex. WaterMap and electrostatic complementarity were used to evaluate the novel bio-isosteric chemotypes of RJC02337, that led to the identification of 231 chemotypes that exhibited better binding affinity. Further analysis of the top 5 chemotypes, based on better binding affinity, revealed that the addition of electron donors like nitrogen and sulphur to the side chains of butanoate group are more favoured than the backbone of butanoate group. In a nutshell, the present study helps identify novel, potent and Plasmodium specific inhibitors, using high throughput in silico screening and bio-isosteric replacement, which may be experimentally validated.  相似文献   
6.
Research on Chemical Intermediates - A series of quinoxaline derivatives were efficiently synthesized by convenient and simple procedure in excellent yields using 1 wt.% of titanium silicate (TS-1)...  相似文献   
7.
    
The reaction of [{(η5-C5Me5)M(μ-Cl)Cl}2] {where M = Rh (1), Ir (2)} with functionalized phosphine viz., diphenyl-2-pyridylphosphine (PPh2Py) in dichloromethane solvent yield neutral ϰ1-P-coordinated rhodium and iridium complexes [(η5-C5Me5)RhCl21-P-PPh2Py)]3 and [(η5-C5Me5) IrCl21-P-PPh2Py)]4. Reaction of complexes 1 and 2 with the ligand PPh2Py in methanol under reflux give bis-substituted complexes such as [(η5-C5Me5)RhCl(ϰ1-P-PPh2Py)2]+ 5 and [(η5-C5Me5)IrCl(ϰ1-P-PPh2Py)2]+ 6, whereas stirring in methanol at room temperature gives P-, N-chelating complexes of the type [(η5-C5Me5)RhCl(ϰ2-P-N-PPh2Py)]+ 7 and [(η5-C5Me5)IrCl(ϰ2-P-N-PPh2Py)]+ 8. Neutral ϰ1-P-coordinated complexes [(η5-C5Me5)RhCl21-P-PPh2Py)]3 and [(η5-C5Me5)IrCl21-P-PPh2Py)]4 easily undergo conversion to the cationic P-, N-chelating complexes [(η5-C5Me5)RhCl(ϰ2-P-N-PPh2Py)]+ 7 and [(η5-C5Me5) IrCl(ϰ2-P, N-PPh2Py)]+ 8 on stirring in methanol at room temperature. These complexes are characterized by FT-IR and FT-NMR spectroscopy as well as analytical methods. The molecular structures of the representative complexes [(η5-C5Me5)RhCl21-P-PPh2Py)]3, [(η5-C5Me5)IrCl21-P-PPh2Py)]4 and hexafluorophosphate salt of complex [(η5-C5Me5)IrCl(ϰ2-P-PPh2Py)2]+ 6 are established by single-crystal X-ray diffraction methods  相似文献   
8.
The scattering of heavy ion with a multilevel Rydberg atom in the presence of an electromagnetic field is studied. The interaction of Rydberg atom and the e.m field is explored using non-perturbative quasi-energy technique. Although the results are presented for selected excitations but in actual calculations we have included many levels of the atom. The effect of various parameters are shown on collisional excitation process. As an illustration detailed calculations are performed for the inelastic proton-Na Rydberg atom collision accompanied by the transfer of photons and the effects of dressing due to the field are considered. The emphasis of the present work is on collision induced transitions especially the case that involves change of orbital as well as principal quantum number. Received 26 December 2001 / Received in final form 8 April 2002 Published online 19 July 2002  相似文献   
9.
Several new families of c‐Bhaskar Rao designs with block size 4 are constructed. The necessary conditions for the existence of a c‐BRD (υ,4,λ) are that: (1)λmin=?λ/3 ≤ c ≤ λ and (2a) c≡λ (mod 2), if υ > 4 or (2b) c≡ λ (mod 4), if υ = 4 or (2c) c≠ λ ? 2, if υ = 5. It is proved that these conditions are necessary, and are sufficient for most pairs of c and λ; in particular, they are sufficient whenever λ?c ≠ 2 for c > 0 and whenever c ? λmin≠ 2 for c < 0. For c < 0, the necessary conditions are sufficient for υ> 101; for the classic Bhaskar Rao designs, i.e., c = 0, we show the necessary conditions are sufficient with the possible exception of 0‐BRD (υ,4,2)'s for υ≡ 4 (mod 6). © 2002 Wiley Periodicals, Inc. J Combin Designs 10: 361–386, 2002; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/jcd.10009  相似文献   
10.
Background: Although microemulsion-based nanoparticles (MEs) may be useful for drug delivery or scavenging, these benefits must be balanced against potential nanotoxicological effects in biological tissue (bio-nano interface). We investigated the actions of assembled MEs and their individual components at the bio-nano interface of thrombosis and hemolysis in human blood. Methods: Oil-in-water MEs were synthesized using ethylbutyrate, sodium caprylate, and pluronic F-68 (ME4) or F-127 (ME6) in 0.9% NaClw/v. The effects of MEs or components on thrombosis were determined using thrombo-elastography, platelet contractile force, clot elastic modulus, and platelet counting. For hemolysis, ME or components were incubated with erythrocytes, centrifuged, and washed for measurement of free hemoglobin by spectroscopy. Results and conclusions: The mean particle diameters (polydispersity index) for ME6 and ME4 were 23.6 ± 2.5 nm (0.362) and 14.0 ± 1.0 nm (0.008), respectively. MEs (0, 0.03, 0.3, 3 mM) markedly reduced the thromboelastograph maximal amplitude in a concentration-dependent manner (49.0 ± 4.2, 39.0 ± 5.6, 15.0 ± 8.7, 3.8 ± 1.3 mm, respectively), an effect highly correlated (r2 = 0.94) with similar changes caused by pluronic surfactants (48.7 ± 10.9, 30.7 ± 15.8, 20.0 ± 11.3, 2.0 ± 0.5) alone. Neither oil nor sodium caprylate alone affected the thromboelastograph. The clot contractile force was reduced by ME (27.3 ± 11.1–6.7 ± 3.4 kdynes/cm2, P = 0.02, n = 5) whereas the platelet population not affected (175 ± 28–182 ± 23 106/ml, P = 0.12, n = 6). This data suggests that MEs reduced platelet activity due to associated pluronic surfactants, but caused minimal changes in protein function necessary for coagulation. Although pharmacological concentrations of sodium caprylate caused hemolysis (EC50 = 213 mM), MEs and pluronic surfactants did not disrupt erythrocytes. Knowledge of nanoparticle activity and potential associated nanotoxicity at this bio-nano interface enables rational ME design for in vivo applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号