首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24篇
  免费   1篇
化学   23篇
物理学   2篇
  2021年   1篇
  2020年   2篇
  2018年   1篇
  2017年   3篇
  2016年   2篇
  2015年   6篇
  2013年   6篇
  2012年   1篇
  2010年   1篇
  2008年   1篇
  2003年   1篇
排序方式: 共有25条查询结果,搜索用时 15 毫秒
1.
In this study,Au nanoparticles/poly 5-[(2-hydroxynaphthalen-l-yl)diazenyl]isophthalic acid film modified glassy carbon electrode(AuNPs/poly(NDI)/GCE) has shown excellent electrocatalytic activity toward the oxidation of adrenaline(ADR),paracetamol(PAC),and tryptophan(Trp).The bare glassy carbon electrode(GCE) fails to separate the oxidation peak potentials of these molecules,while the poly(NDI) film modified electrode can resolve them.Electrochemical impedance spectroscopy(EIS)indicates that the charge transfer resistance of the bare electrode decreases as 5-[(2-hydroxynaphthalen-l-yl)diazenyl]isophthalic acid is electropolymerized on the bare electrode.Furthermore,EIS exhibits enhancement of electron transfer kinetics between analytes and the electrode after electrodeposition of Au nanoparticles.Differential pulse voltammetry results show that the electrocatalytic current increases linearly in the ranges of 0.01-680.0 μmol L~1 for ADR,0.05-498.0 μmol L~1 for PAC,and 3.0-632.0 μmol L~1 for Trp;with detection limits(S/N = 3) of 0.009 μmol L~1,0.005 μmol L~1,and 0.09 μmol L~1 for ADR,PAC,and Trp,respectively.The proposed method has been successfully applied for simultaneous determination of ADR,PAC,and Trp in biological samples.  相似文献   
2.
Considering the importance of the nanocomposites, the present work focuses on some new hybrid materials prepared by introducing reactive organoclay (OC) into the chiral poly(amide-imide) (PAI) matrix. At first, Cloisite Na+ was modified with protonated l-isoleucine amino acid. Then, PAI containing phenylalanine was synthesized via solution polycondensation of chiral diacid chloride with 4,4′-diaminodiphenylsulfone and was characterized with Fourier transform infrared (FTIR) and 1H NMR techniques. At last, PAI/OC nanocomposite films containing 2, 5, 10, and 15 % of OC were prepared via solution intercalation method. The effect of OC dispersion and the interaction between OC and polymer chains on the properties of nanocomposites were investigated using FTIR, X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, tensile testing of thin films, and thermogravimetry analysis techniques. The thermal stability of hybrids such as the decomposition temperature and mass residue at 800 °C was improved. Mechanical data indicated improvement in the tensile strength of the nanocomposites with OC loading up to 10 wt%. The transparency of the hybrid films was investigated by means of UV–Vis spectra.  相似文献   
3.
Nanostructured amino acid containing poly(amide-imide) (PAI) was synthesized from the direct polycondensation reaction of 2–(3,5–diaminophenyl)–benzimidazole and N,N′–(pyromellitoyl)–bis–phenylalanine diacid under green condition by using tetrabutylammonium bromide as molten ionic liquid. Field emission scanning electron microscopy images show that the average diameter of polymeric nanoparticles with spherical shape was around 20–35 nm. In the next step, these polymeric nanoparticles were used as nano-fillers for reinforcement of poly(vinyl alcohol) (PVA) for the first time. Bionanocomposite of PVA and various compositions of PAI nanoparticles were produced through ultrasound-assisted technique. Fourier transform infrared spectroscopy, x-ray diffraction, field emission scanning electron microscopy, and thermogravimetric analysis were utilized to characterize the obtained hybrid materials, morphology, and properties. Results of thermal properties indicated that the thermal stability is enhanced. The improvement of thermal properties was attributed to the homogeneous and good dispersion of PAI nanoparticles in the PVA matrix and the strong hydrogen bonding between O–H groups of PVA and the carbonyl of amide and imide groups of the used PAI nanoparticles.  相似文献   
4.
The aim of this study was to obtain novel photo-functional organomontmorillonites from the intercalation reaction of Cloisite Na+ and fluorescent dyes of auramine O, and safranin T in an aqueous solution. The insertion of surfactants in the interlamellar space of nanoclay was followed by Fourier transform infrared spectroscopy and X-ray measurements. An X-ray diffraction analysis established that incorporation of the organic dye cations into the Cloisite Na+ expands remarkably the mineral interplanar distances from 1.17 to 1.83–1.97 nm. Field emission scanning electron microscopy was used to study the morphology of the synthesized organoclays. The thermal behavior of the novel hybrid materials was investigated by thermogravimetric analysis and the results show that the organo modified clays verify stepwise decomposition corresponding to initial weight loss from residual water desorption, followed by decomposition of the fluorescent dyes and the dehydroxylation of structural water of the clay layers. Fluorescence properties of the cationic dyes, auramine O, and safranin T incorporated in the clay have significant differences from their behavior in organic solvents and water and the results show that both dyes exhibit a significant fluorescence emission at room temperature when adsorbed in clay.  相似文献   
5.
6.
s‐Triazine containing dicarboxylic acid was synthesized. Then, it was reacted with 1,3‐phenylenediamine in molten tetrabutylammonium bromide to formed soluble aromatic polyamide with good yield and moderate inherent viscosity of 0.35 dL g?1. The solubility and flexibility of polyamides are low. So, we used ether group such as di(4‐aminephenyl) ether in building polyamide. The structure of monomer and polymer was confirmed by Fourier transform infrared spectroscopy, elemental analysis, and proton nuclear magnetic resonance techniques. Thermogravimetric analysis was used to evaluate the thermal properties of synthesized polyamide, and their results show that this polymer had a good thermal stability. The surface morphology of s‐triazine containing polyamide was studied by field emission‐scanning electron microscopy and transmission electron microscopy, and the results show that it has a porous morphology and moderate Brunauer–Emmett–Teller specific surface (367 m2 g?1). It was further investigated for Pb (II) and Cr(VI) ion removal by optimizing the parameters including pH and contact time. The maximum uptakes of Pb(II) and Cr(VI) at pH 5.0 and pH 4.0 are 57% and 76%, respectively. Also, sorption kinetics of this polymer was investigated. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
7.
In this study, a simple, fast and environmentally friendly protocol has been proposed for the synthesis of layered double hydroxides (LDHs) and organomodified chiral LDHs under ultrasound irradiation as a green and fast tool for the first time. Novel chiral LDHs were synthesized in one step from the co-precipitation reaction of the Al(NO3)3·9H2O, Mg(NO3)2·6H2O and different bioactive N-trimellitylimido-l-amino acids in aqueous state. The obtained materials were studied by several methods such as Fourier transformed infrared spectroscopy, X-ray diffraction, field emission scanning electron microscopy and transmission electron microscopy techniques. The results of structural and morphological analyses showed the successful intercalation of chiral diacids within the interlayer of LDH clay. Thermal properties were investigated by thermogravimetry analysis. The results showed that there were four weight loss steps during the thermal decomposition. The amino acid containing N-trimellitylimido diacid created a chiral environment in the modified LDH that could be used in the chiral field.  相似文献   
8.
In this study, a series of polymer–clay nanocomposite materials, consisting of organosoluble poly(amide-imide) (PAI) matrix and dispersed nanolayers of inorganic montmorillonite clay, were successfully prepared by solution dispersion technique. At first, the reactive organoclay was prepared by using protonated l-isoleucine amino acid as a swelling agent for silicate layers of Cloisite Na+. Then, organosoluble PAI containing isoleucine amino acid was synthesized through step-growth polymerization reaction of N,N′-(pyromellitoyl)-bis-isoleucine diacid and 2-(3,5-diaminophenyl)-benzimidazole under green condition using molten tetrabutylammonium bromide. This polymer was end-capped with amine end groups near the completion of the reaction to interact chemically with acidic group of organoclay. Finally, PAI/organoclay nanocomposite films containing 2%, 5%, 10%, and 15% of organoclay were prepared via solution intercalation method through blending of organoclay with the PAI solution. Dispersion of the modified clay in the PAI matrix resulted in a nanostructured material containing intercalated polymer between the silicate layers. Structures of exfoliation were confirmed by X-ray diffraction, Fourier transform infrared spectroscopy, field emission scanning electron microscopy, and transmission electron microscopy. Thermogravimetric analysis data indicated that the addition of organoclay into the PAI matrix increased the thermal decomposition temperatures of the obtained nanocomposites compared to the pure PAI.  相似文献   
9.
Polymeric Schiff base ligands were synthesized using 2-hydroxybenzaldehyde (L2), 4-hydroxy-3-methoxybenzaldehyde (L4), and 5-aminoisophthalic acid. The nanostructured complexes were then synthesized using Ni2+, Cu2+, and Mn3+. The ligands and complexes thus synthesized were characterized using Fourier-transform infrared spectroscopy, X-ray diffraction, thermogravimetric analysis (TGA), and field-emission scanning electron microscopy. The thermal stability of the complexes was confirmed using TGA. The synthesized complexes were used as catalysts in the reduction of 4-nitrophenol (4-NP) to 4-aminophenol in an aqueous phase in the presence of sodium borohydride. In this work, the catalytic reactivity of nanostructured complexes was compared using the rate constant (k) of the reaction. The reaction time for the reduction of 4-NP was 5–14 min for different complexes. The catalytic system based on Ni2+/2-hydroxybenzaldehyde was the most active and displayed reusability in the reduction of 4-NP.  相似文献   
10.
Nanohybrid materials prepared by the nanoscale incorporation of organic moieties into the interlayer spaces of layered inorganic hosts have attracted a great deal of interest because of their wide applications in industry and environmental protection. In this investigation, a simple and green method is reported for the preparation of novel trifunctionalized organoclays (OCs) using protonated form of acidic (aspartic and glutamic acid) and hydroxyl (serine and tyrosine) functionalized α-amino acids with Cloisite Na+. The synthesized OCs were characterized by Fourier transform infrared spectroscopy, X-ray diffraction, thermogravimetric analysis, and dispersibility measurement. X-ray diffraction results show that the basal spacing of the OCs increased with amino acids loading that affirm that the intercalation was successful. The morphology of these novel materials was examined by scanning electron microscopy, field emission scanning electron microscopy and transmission electron microscopy. Thermogravimetric analysis show that the quantity of organic modifier in the organo-bionanoclays is in good agreement with the theoretically calculated stoichiometric content expected for approximately entire exchange of Na+ ions by amino acid cations. These results are very important and relevant to the preparation of low-cost, biocompatible and biodegradable organo-nanoclays for industrial applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号