首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
化学   8篇
物理学   2篇
  2012年   1篇
  2010年   1篇
  2009年   1篇
  2008年   2篇
  2005年   1篇
  2004年   1篇
  2002年   1篇
  2001年   1篇
  1999年   1篇
排序方式: 共有10条查询结果,搜索用时 15 毫秒
1
1.
B3LYP/6-31G* calculations indicate that sequential annelation of benzene rings to the rim of corannulene gradually flattens the skeleton. Pentabenzocorannulene is predicted to exhibit nearly barrierless flipping motion at room temperature. A mixed quartic-quadratic potential successfully explains the inversion barrier and curvature (given by the pi-orbital axis vector angle) relationship.  相似文献   
2.
Diene-dienophile competing Diels-Alder reaction pathways of cyclopentadiene, 1H-, 2H- and 3H-phospholes with butadiene were explored at the B3LYP level using 6-31G(d) and 6-311+G(d,p) basis sets, and at the CCSD(T)/6-31G(d)//B3LYP/6-31G(d) level. Activation barriers show that cyclopentadiene favors a diene rather than a dienophile conformation. Pathways 1 and 2 (A and B) corresponding to butadiene as the diene and dienophile are predicted to be highly competitive in the case of 1H-phosphole. Secondary orbital interactions and the preferable bispericyclic nature of transition states are responsible for the stability of endo transition states. The study indicates that some of the transition states are bispericyclic and most of them are highly asynchronous. The reactions require a lower activation energy when the conversion of weak C=P to C-P occurs in the case of 2H- and 3H-phospholes. The high stability of the products resulting via path 1 can be attributed to the less strain in the bicyclo[4.3.0]nonadiene skeleton compared to the norbornene derivatives obtained from path 2. Activation and reaction energy values for these Diels-Alder reaction pathways are compared with the values reported for the [4+2] cyclodimerizations of each of the reactants to examine the likelihood of cyclodimerizations along these pathways.  相似文献   
3.
DFT (B3LYP functional) and MP2 methods using 6-311+G(2d,2p) basis set have been employed to examine the effect of ring fusion to benzene on the cation--π interactions involving alkali metal ions (Li+, Na+, and K+) and alkaline earth metal ions (Be2+, Mg2+ and Ca2+). Our present study indicates that modification of benzene (π-electron source) by fusion of monocyclic or bicyclic (or mixture of these two kinds of rings) strengthens the binding affinity of both alkali and alkaline earth metal cations. The strength of interaction decreases in the following order: Be2+ > Mg2+ > Ca2+ > Li+ > Na+ > K+ for any considered aromatic ligand. The interaction energies for the complexes formed by divalent cations are 4–6 times larger than those for the complexes involving monovalent cations. The structural changes in the ring wherein metal ion binds are examined. The distance between ring centroid and the metal ion is calculated for all of the complexes. Strained bicyclo[2.1.1]hexene ring fusion has substantially larger effect on the strength of cation--π interactions than the monocyclic ring fusion for all of the cations due to the π-electron localization at the central benzene ring.  相似文献   
4.
Marine molluscs have long been recognised as potential records of palaeoclimate change using the patterns and differences in the stable isotopic composition of the carbonate shells. The aim of this study is to improve the robustness of this approach for aragonitic molluscs by completing the first experimental calibration of the fractionation between water and biogenic aragonite. Fractionation factors were calibrated by growing specimens of the freshwater mollusc Lymnaea peregra under controlled conditions of water temperature and isotopic composition. Fifteen populations of L. peregra were maintained at constant temperature and isotopic conditions for five months (at five different temperatures and using three different water compositions). Water samples and temperature measurements were taken regularly throughout the experiment. The temperature dependence of the fractionation factor, between 8 and 24 degrees C, is given by: 1000 ln alpha=16.74x(1000T(-1))-26.39 (T in Kelvin) and the relationship between temperature (T), delta(18)O(carb) and delta(18)O(wat) is given by: T=21.36-4.83xdelta(+ degrees )O(carb)-delta(+ degrees )O(wat) (T is in degrees C, delta(18)O(carb) is with respect to Vienna Pee Dee Belemnite (PDB), the International Atomic Energy Agency (IAEA) replacement standard for PDB, and delta(18)O(wat) is with respect to Vienna standard mean ocean water (VSMOW)) The outcome of the controlled experiment is compared with previous studies on synthetic, and biogenic, calcite and aragonite from field and laboratory investigations. These comparisons suggest that although a vital offset exists between the fractionation of isotopes in synthetic and biogenic aragonite for molluscs in general, there is no vital effect that is specific either to freshwater, or to individual, genera. Therefore, the calibrated relationship may be used for any freshwater or marine mollusc to derive palaeotemperatures providing the isotopic composition of the environmental water can be reliably constrained. Copyright 1999 John Wiley & Sons, Ltd.  相似文献   
5.
PR Vyas  CV Pandya  TC Pandya  VB Gohel 《Pramana》2001,56(4):559-568
A simple method to generate an effective electron-ion interaction pseudopotential from the energy wave number characteristic obtained by first principles calculations has been suggested. This effective potential has been used, in third order perturbation, to study the effect of three-body forces on the lattice dynamics of noble metals. It is found that three-body forces, in these metals, do play an important role. The inclusion of such three-body forces appreciably improves the agreement between the experimental and theoretical phonon dispersion curves.  相似文献   
6.
Hydration of mono- and divalent metal ions (Li(+), Na(+), K(+), Be(2+), Mg(2+) and Ca(2+)) has been studied using the DFT (B3LYP), second-order M?ller-Plesset (MP2) and CCSD(T) perturbation theory as well as the G3 quantum chemical methods. Double-zeta and triple-zeta basis sets containing both (multiple) polarization and diffuse functions were applied. Total and sequential binding energies are evaluated for all metal-water clusters containing 1-6 water molecules. Total binding energies predicted at lower levels of theory are compared with those from the high level G3 calculations, whereas the sequential binding energies are compared with available experimental values. An increase in the quality of the basis set from double-zeta to triple-zeta has a significant effect on the sequential binding energies, irrespective of the geometries used. Within the same group (I or II), the sequential binding energy predictions at the MP2 and B3LYP vary appreciably. We noticed that, for each addition of a water molecule, the change of the M-O distance in metal-water clusters is higher at the B3LYP than at the MP2 level. The charge of the metal ion decreases monotonically as the number of water molecules increase in the complex.  相似文献   
7.
The interactions of alkali metal cations (Li (+), Na (+), and K (+)) with the cup-shaped molecules, tris(bicyclo[2.2.1]hepteno)benzene and tris(7-azabicyclo[2.2.1]hepteno)benzene have been investigated using MP2(FULL)/6-311+G(d,p)//MP2/6-31G(d) level of theory. The geometries and interaction energies obtained for the metal ion complexation with the cup-shaped systems trindene and benzotripyrrole are compared with the results for benzene-metal ion complexes to examine the effect of ring addition to the benzene on structural and binding affinities. The cup-shaped molecules exhibit two faces or cavities (top and bottom). Except for one of the conformers of tris(7-azabicyclo[2.2.1]hepteno)benzene), the metal ions prefer to bind with the top face over bottom face of the cup-shaped molecules. The selectivity of the top face is due to strong interaction of the cation with the pi cloud not only from the central six-membered ring but also from the pi electrons of rim C=C bonds. In contrast, the metal ions under study exhibit preference to bind with the bottom face rather than top face of tris(7-azabicyclo[2.2.1]hepteno)benzene) when the lone pair of electrons of three nitrogen atoms participates in binding with metal ions. This bottom face selectivity could be ascribed to the combined effect of the cation-pi and strong cation-lone pair interactions. As evidenced from the values of pyramidalization angles, the host molecule becomes deeper bowl when the lone pair of electrons of nitrogen atoms participates in binding with cation. Molecular electrostatic potential surfaces nicely explain the cavity selectivity in the cup-shaped systems and the variation of interaction energies for different ligands. Vibrational frequency analysis is useful in characterizing different metal ion complexes and to distinguish top and bottom face complexes of metal ions with the cup-shaped molecules.  相似文献   
8.
9.
Benzene dimer configurations namely T-shaped, parallel-displaced, sandwich, and V-shaped that were proposed by experimental studies are investigated using second- and fourth-order Møller–Plesset perturbation theory. The MP2 method with aug-cc-pVDZ and aug-cc-pVTZ basis sets unequivocally shows that the parallel-displaced configuration is considerably more stable than T-shaped structure. On the other hand, the MP4(SDTQ)/aug-cc-pVDZ level predicts that the T-shaped and parallel-displaced configurations are nearly isoenergetic, which is parallel to the previous results of estimated CCSD(T)/CBS level reported recently. The lowest energy T-shaped configuration is stabilized by 0.17 kcal/mol over the parallel-displaced configuration at the MP4(SDTQ)/aug-cc-pVDZ level. Although the structures of all the four different types of configurations are found to be stable at both MP2 and full MP4 methods, the V-shaped configuration is the least stable among them. The calculated interaction energy of ?2.3 kcal/mol for the lowest energy T-shaped structure at the MP4(SDTQ)/aug-cc-pVDZ level is in good agreement with the experimental value of ?2.4 ± 0.4 kcal/mol. We conclude that the MP4(SDTQ) with a reasonably good basis set can be used for systems involving π–π interactions to obtain qualitative and quantitative results.  相似文献   
10.
B3LYP/6-311G calculations indicate that annelation of a five-membered ring to the rim of corannulene and substitution to all the rim carbons lowers the barrier for bowl-to-bowl inversion. Singlet-triplet energy differences, frontier orbital analysis, and nucleus-independent chemical shift (NICS) values indicate significant enhancement of the reactivity when the substitutions involve exocyclic double bonds. Bowl-to-bowl inversion barrier, curvature, and reactivity for unsaturated and saturated five-membered ring-annelated corannulenes are analogous to decamethyl- and decamethylene-substituted corannulenes.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号