首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   109篇
  免费   8篇
化学   91篇
晶体学   1篇
力学   2篇
数学   4篇
物理学   19篇
  2023年   5篇
  2022年   7篇
  2021年   3篇
  2020年   10篇
  2019年   4篇
  2018年   1篇
  2017年   1篇
  2016年   4篇
  2015年   5篇
  2014年   1篇
  2013年   4篇
  2012年   12篇
  2011年   14篇
  2010年   5篇
  2009年   4篇
  2008年   14篇
  2007年   6篇
  2006年   4篇
  2005年   4篇
  2004年   1篇
  2003年   1篇
  1999年   1篇
  1998年   2篇
  1997年   2篇
  1988年   1篇
  1979年   1篇
排序方式: 共有117条查询结果,搜索用时 26 毫秒
1.
A vesicle-forming chiral cationic surfactant (1R,2S)-(-)-N-dodecyl-N-methyl-ephedrinium bromide was evaluated as a pseudo-stationary phase in micellar electrokinetic chromatography (MEKC) for enantioseparation of eight non-steroidal anti-inflammatory drugs e.g., carprofen, flurbiprofen, fenoprofen, ibuprofen, indoprofen, ketoprofen, naproxen and suprofen by capillary electrophoresis. The effects of varying experimental conditions such as pH and concentration of surfactant in the running buffer on the enantiomer separation of the drugs are reported. A mixture of five of the above drugs was separated and each enantiomeric pair was also separated simultaneously in a single run by use of the surfactant. The strong electrostatic interactions between the analytes and the vesicles seemed to have a major role in the enantiomeric separation of the profens.  相似文献   
2.
Hydrogels of amino acid based cationic surfactant having C16 tails were used to immobilize heme proteins and enzyme. These hydrogel‐entrapped proteins/enzyme showed remarkable activation when dispersed in organic solvent. The activation effect (ratio of the activity of the hydrogel‐entrapped enzyme in organic solvent to the activity of the native enzyme in water) of cytochrome c increased up to 350‐fold with varying protein and gelator concentration. Hydrogel‐entrapped hemoglobin and horseradish peroxidase (HRP) also showed markedly improved activity in organic solvent. Alteration in the structure of the gelator and its supramolecular arrangement showed that the protein immobilized within amphiphilic networks with larger interstitial space exhibited higher activation. This striking activation of hydrogel‐entrapped proteins stems from the following effects: 1) the hydrophilic domain of the amphiphilic networks facilitates accessibility of the enzyme to the water‐soluble substrate. 2) the surfactant, as an integral part of the amphiphilic network, assists in the formation of a distinct interface through which reactants and products are easily transferred between hydrophilic and hydrophobic domains. 3) Surfactant gelators help in the dispersion and stabilization of gel matrix into small particles in organic solvent, which enhances the overall surface area and results in improved mass transfer. The activation was dramatically improved up to 675‐fold in the presence of nongelating anionic surfactants that helped in disintegration of the gel into further smaller‐sized particles. Interestingly, hydrogel‐immobilized HRP exhibited about 2000‐fold higher activity in comparison to the activity of the suspended enzyme in toluene. Structural changes of the entrapped enzyme and the morphology of the matrix were investigated to understand the mechanism of this activation.  相似文献   
3.
The gelation of ionic liquids is attracting significant attention because of its large spectrum of applications across different disciplines. These ‘green solvents’ have been the solution to a number of common problems due to their eco‐friendly features. To expand their applications, the gelation of ionic liquids has been achieved by using amino acid‐based low‐molecular‐weight compounds. Variation of individual segments in the molecular skeleton of the gelators, which comprise the amino acid and the protecting groups at the N and C termini, led to an understanding of the structure–property correlation of the ionogelation process. An aromatic ring containing amino acid‐based molecules protected with a phenyl or cyclohexyl group at the N terminus were efficient in the gelation of ionic liquids. In the case of aliphatic amino acids, gelation was more prominent with a phenyl group as the N‐terminal protecting agent. The probable factors responsible for this supramolecular association of the gelators in ionic liquids have been studied with the help of field‐emission SEM, 1H NMR, FTIR, and luminescence studies. It is the hydrophilic–lipophilic balance that needs to be optimized for a molecule to induce gelation of the green solvents. Interestingly, to maximize the benefits from using these green solvents, these ionogels have been employed as templates for the synthesis of uniform‐sized TiO2 nanoparticles (25–30 nm). Furthermore, as a complement to their applications, ionogels serve as efficient adsorbents of both cationic and anionic dyes and were distinctly better relative to their organogel counterparts.  相似文献   
4.
A chiral monomer containing L ‐leucine as a pendant group was synthesized from methacryloyl chloride and L ‐leucine in presence of sodium hydroxide at 4 °C. The monomer was polymerized by free radical polymerization in propan‐2‐ol at 60 °C using 2,2′‐azobis isobutyronitrile (AIBN) as an initiator under nitrogen atmosphere. The polymer, poly(2‐(Methacryloyloxyamino)‐4‐methyl pentanoic acid) is thus obtained. The molecular weight of the polymer was determined to be: Mw is 6.9 × 103 and Mn is 5.6 × 103. The optical rotation of both chiral monomer and its polymer varies with the solvent polarity. The amplification of optical rotation due to transformation of monomer to polymer is associated with the ordered conformation of chiral monomer unit in the polymeric chain due to some secondary interactions like H‐bonding. The synthesized monomer and polymer exhibit intense Cotton effect at 220 nm. The conformation of the chain segments is sensitive to external stimuli, particularly the pH of the medium. In alkaline medium, the ordered chain conformation is destroyed resulting disordered random coils. The ordered coiling conformation is more firmly present on addition of HCl. The polymer exhibits swelling‐deswelling characteristics with the change of pH of the medium, which is reversible. The Cotton effect decreases linearly with the increase of temperature which is reversible on cooling. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2228–2242, 2009  相似文献   
5.
If f(z) is an entire function with ρ 1 > 0 as its exponent of convergence of zeros and if 0 ≤ α < ρ 1, then we prove the existence of entire functions each having α as its exponent of convergence of zeros.   相似文献   
6.
We present results from atomic force microscopy (AFM) images indicating various experimental conditions, which alter the morphological characteristics of self-assembled cyanobacterial PS I on hydroxyl-terminated self-assembled alkanethiolate monolayers (SAM/Au) substrates. AFM topographical images of SAM/Au substrates incubated in solutions containing different PS I concentrations solubilized with Triton X-100 as the detergent reveal large columnar aggregates (~100 nm and hence, much taller than a single PS I trimer) at high PS I concentrations. Depositions from dilute PS I suspensions reveal fewer aggregates and relatively uniform surface topography (~10 nm). Confocal fluorescence microscopy analysis of fluorescently tagged PS I deposited on to SAM/Au substrates using electric field and gravity driven techniques reveal preliminary indications of directionally aligned PS I attachments, besides corroborating a uniform monolayer formation, for the former deposition method. The complex attachment dynamics of PS I onto SAM substrates are further investigated from the AFM images of PS I/SAM/Au substrates prepared under different experimental conditions using: 1) PS I isolated as monomers and trimers 2) adsorption at elevated temperatures, and 3) different detergents with varying pH values. In each of the cases, the surface topology indicated distinct yet complex morphological and phase characteristics. These observations provide useful insight into the use of experimental parameters to alter the morphological assembly of PS I on to SAM substrates en route to successful fabrication of PS I based biohybrid photoelectrochemical devices.  相似文献   
7.
In this article, we discuss and analyze new conforming virtual element methods (VEMs) for the approximation of semilinear parabolic problems on convex polygonal meshes in two spatial dimension. The spatial discretization is based on polynomial and suitable nonpolynomial functions, and a Euler backward scheme is employed for time discretization. The discrete formulation of both the proposed schemes—semidiscrete and fully discrete (with time discretization) is discussed in detail, and the unique solvability of the resulted schemes is discussed. A priori error estimates for the proposed schemes (semidiscrete and fully discrete) in H1‐ and L2‐norms are derived under the assumption that the source term f is Lipschitz continuous. Some numerical experiments are conducted to illustrate the performance of the proposed scheme and to confirm the theoretical convergence rates.  相似文献   
8.
Fluorescence resonance energy transfer (FRET) from Coumarin 153 (C153) to Rhodamine 6G (R6G) in a secondary aggregate of a bile salt (sodium deoxycholate, NaDC) is studied by femtosecond up-conversion. The emission spectrum of C153 in NaDC is analysed in terms of two spectra-one with emission maximum at 480 nm which corresponds to a non-polar and hydrophobic site and another with maximum at ∼530 nm which arises from a polar hydrophilic site. The time constants of FRET were obtained from the rise time of the emission of the acceptor (R6G). In the NaDC aggregate, FRET occurs in multiple time scales — 4 ps and 3700 ps. The 4 ps component is assigned to FRET from a donor (D) to an acceptor (A) held at a close distance (R DA ∼ 17 ?) inside the bile salt aggregate. The 3700 ps component corresponds to a donor-acceptor distance ∼48 ?. The long (3700 ps) component may involve diffusion of the donor. With increase in the excitation wavelength (λ ex) from 375 to 435 nm, the relative contribution of the ultrafast component of FRET (∼4 ps) increases from 3 to 40% with a concomitant decrease in the contribution of the ultraslow component (∼3700 ps) from 97 to 60%. The λ ex dependence is attributed to the presence of donors at different locations. At a long λ ex (435 nm) donors in the highly polar peripheral region are excited. A short λ ex (375 nm) ‘selects’ donor at a hydrophobic location.  相似文献   
9.
Gallium oxide (beta-Ga2O3) nanoparticles were successfully deposited on quartz glass substrates using sodium bis(2-ethylhexyl) sulfosuccinate (AOT)/n-hexane/ethylene glycol monomethyl ether (EGME) reverse micelle-mediated solvothermal process with different omega values. The mean diameter of Ga2O3 particles was approximately 2-3 nm and found to be approximately independent of omega values of the reverse micelles. However, when the Ga2O3 nanocrystalline films were nitrided at 900 degrees C under flowing NH3 atmosphere for 1 h, the mean diameter of the resulted gallium nitride (wurtzite-GaN) nanoparticles varied from 3-9 nm. Both nanocrystalline films of Ga2O3 and GaN were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, UV-vis spectroscopy and photoluminescence in order to study their chemical and physical properties explicitly.  相似文献   
10.
Extant enzymes with precisely arranged multiple residues in their three-dimensional binding pockets are capable of exhibiting remarkable stereoselectivity towards a racemic mixture of substrates. However, how early protein folds that possibly featured short peptide fragments facilitated enantioselective catalytic transformations important for the emergence of homochirality still remains an intriguing open question. Herein, enantioselective hydrolysis was shown by short peptide-based nanotubes that could exploit multiple solvent-exposed residues to create chiral binding grooves to covalently interact and subsequently hydrolyse one enantiomer preferentially from a racemic pool. Single or double-site chiral mutations led to opposite but diminished and even complete loss of enantioselectivities, suggesting the critical roles of the binding enthalpies from the precise localization of the active site residues, despite the short sequence lengths. This work underpins the enantioselective catalytic prowess of short peptide-based folds and argues their possible role in the emergence of homochiral chemical inventory.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号