首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19篇
  免费   0篇
化学   6篇
物理学   13篇
  2013年   1篇
  2011年   2篇
  2010年   3篇
  2009年   1篇
  2008年   2篇
  2007年   2篇
  2004年   2篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
  1998年   1篇
  1990年   2篇
排序方式: 共有19条查询结果,搜索用时 15 毫秒
1.
α-Fe2O3-In2O3 mixed oxide nanoparticles system has been synthesized by hydrothermal supercritical and postannealing route, starting with (1−x)Fe(NO3)3·9H2xIn(NO3)3·5H2O aqueous solution (x=0-1). X-ray diffraction and Mössbauer spectroscopy have been used to study the phase structure and substitutions in the nanosized samples. The concentration regions for the existence of the solid solutions in the α-Fe2O3-In2O3 nanoparticle system together with the solubility limits of In3+ ions in the hematite lattice and of Fe3+ ions in the cubic In2O3 structure have been evidenced. In general, the substitution level is considerably lower than the nominal concentration x. A justification of the processes leading to the formation of iron and indium phases in the investigated supercritical hydrothermal system has been given.  相似文献   
2.
The thermochemical behavior of the coordination compound [Fe(urea)6](NO3)3 was studied by simultaneous CG–TG–DTG–DTA and mass spectrometry methods non-isothermal conditions. The compound decomposes at 200 °C into a mixture of spinel-type oxides and hematite. The nature and particle size of the final decomposition products are strongly associated with the conditions during the thermal treatments, in particular the heating rate and the calcination temperature. A certain fraction of the products are formed as nanometric particles; they show superparamagnetic behavior at room temperature. The comparably low temperature of the calcination treatments of this compound is a promising perspective to attain small sized magnetic powders.  相似文献   
3.
The thermal behaviour of three coordination compounds, potential precursors of nickel ferrite [Fe2Ni(C4H4O5)2.5(OH)2]NO3·5H2O,[Fe2Ni(C4H8O3N2)4](NO3)8·24H2O and (NH4)[Fe2Ni(C4H4O5)3(OH)3]·3H2O has been investigated to evaluate their suitability as precursors for nickel ferrite. For a complete and reliable assignment of the thermal transformations, the isolable solid intermediates and end products were characterized by IR, X-ray diffraction and Mössbauer investigations. A decomposition scheme is proposed.  相似文献   
4.
The thermal stability of two kinds of dextran-coated magnetite (dextran with molecular weight of 40,000 (Dex40) and 70,000 (Dex70)), obtained by dextran adsorption onto the magnetite surface is investigated in comparison with free dextran in air and argon atmosphere. The thermal behavior of the two free dextran types and corresponding coated magnetites is similar, but atmosphere dependent. The magnetite catalyzes the thermal decomposition of dextran, the adsorbed dextran displaying lower initial decomposition temperatures comparative with the free one in both working atmospheres. The dextran adsorbed onto the magnetite surface decomposes in air through a strong sharp exothermic process up to ~450 °C while in argon atmosphere two endothermic stages are identified, one in the temperature range 160–450 °C and the other at 530–800 °C.  相似文献   
5.
Zirconium-doped hematite particles of the type xZrO2-(1−x)α-Fe2O3 (x=0.1, 0.5) were synthesized using mechanochemical activation and characterized by X-ray diffraction (XRD) and Mössbauer spectroscopy. For x=0.1 all zirconia was dissolved in the hematite lattice after 12 h of ball milling and a particle size of 9 nm was obtained. We obtained the recoilless fraction as function of the ball milling time for each value of the molar concentration x. The appearance of nanoparticles in the system was demonstrated based on these plots. We further correlated the structural properties of the zirconium-doped hematite system with the sensing properties of the best candidate in the series. These were measured as function of temperature, gas concentration (carbon monoxide and methane) and variable humidity of air. The material system was found to be sensitive over the entire range of CO concentrations and the linearity of the sensor signal was not affected by the relative humidity of air, qualities which make it the ideal system for gas sensing.  相似文献   
6.
Samples of hematite were exposed to mechanochemical activation by high energy ball milling for 0–27 h. The milling-induced changes to the structural and magnetic properties of hematite were characterized by X-ray diffraction (XRD) and Mössbauer spectroscopy. The particle size was found to decrease from 80 to 16.5 nm after 8 h of ball milling time, followed by a small increase to 19.8 nm at the end of the milling period. An overall expansion of the crystalline lattice parameters a and c with the milling time was deduced. The magnetic hyperfine field decreased with the ball milling time, from 51.46 down to 50.68 T after 27 h of grinding. Magnetite and traces of iron were observed at the longest milling time employed. The recoilless fraction (f ) was measured simultaneously using a dual Mössbauer absorber consisting of hematite and a stainless steel etalon. The f factor first decreased with the milling time due to occurrence of nanoparticles in the system, had a maximum at 12 h due to agglomerations of nanoparticles and exhibited a second maximum at 27 h, due to the appearance of magnetite in the system. More samples of hematite were subjected to magnetomechanical activation by magnetic ball milling for 52 and 134 h. A phase mixture of hematite and magnetite was observed.  相似文献   
7.
This study reports a two-steps route for obtaining magnetic nanoparticles–polysaccharide hybrid materials consisting of Fe3O4, NiFe2O4 and CuFe2O4 nanoparticles synthesis by coprecipitation method in the presence of a soft template followed by coating of ferrite nanoparticles of 8–10-nm size range with polysaccharide type polymers—sodium alginate or chitosan. Magnetic oxide nanoparticles and the corresponding hybrid materials were characterized by X-ray diffraction (XRD), Mössbauer spectroscopy, atomic absorption spectroscopy (AAS), FTIR spectroscopy, scanning and transmission electron microscopy (SEM and TEM) and specific surface area measurements. The vibrating sample magnetometry confirms the superparamagnetic properties of the synthesized ferrites and hybrids. Using this route, the percent of magnetic nanoparticles retained in chitosan-based hybrid materials is nearly double in comparison with that of sodium alginate–based materials. The biological activity tests on Escherichia coli ATCC 25922, Pseudomonas aeroginosa ATCC 27853, Staphylococcus aureus ATCC 25923 and Candida scotti microorganisms show the non-toxic properties of prepared hybrid materials.  相似文献   
8.
The persistent extinction of fluorescence emission of Eu(3+) in glasses activated with europium and cerium is reported for the first time to the authors' knowledge. The glass samples containing Eu(3+) and Ce(3+) were initially colorless and transparent and exhibited intense emission peaks at 592 and 612 nm assigned to the (5)D(0)-(7)F(1, 2) transitions of Eu(3+). The complete extinction of the Eu(3+)-ion emission was obtained as an effect of multipulse excimer-UV-laser (lambda = 248 nm, tau(FWHM) >/= 20 ns) irradiation of the glass samples. Fluorescence microscopy, M?ssbauer spectrometry, and electron spin resonance were applied for investigation of the modifications induced by the laser treatment. As a decisive proof of the extinction of fluorescence we succeeded in recording three-dimensional fluorescent photographic patterns within the activated samples.  相似文献   
9.
The thermal stability of two amino acid-(tyrosine and tryptophan) coated magnetite and their corresponding precursors, [Fe2IIIFeII(Tyr)8]·9H2O and [Fe2IIIFeII(Trp)2(OH)4](NO3)2·8H2O (where tyrosine=Tyr and tryptophan=Trp), was analyzed in comparison with free amino acids. The complexes present a lower thermal stability relative to the free ligand, due to the catalytic effect introduced by the iron cation and the presence of NO3 groups. The presence of NO3 group determines also a different degradation’s stoichiometry of the amino acid anion comparative with the one expressed by the free ligand molecule. The amino acid bonded to magnetite decomposes in two steps, its presence inducing an increasing of γ-Fe2O3→Fe2O3 conversion temperature.  相似文献   
10.
Indium oxide-doped hematite xIn2O3*(1-x)??-Fe2O3 (molar concentration x = 0.1?C0.7) solid solutions were synthesized using mechanochemical activation by ball milling. XRD patterns yield the dependence of lattice parameters and grain size as function of milling time. After 12 h of milling, the completion of In3?+? substitution of Fe3?+? in hematite lattice occurs for x = 0.1. For x = 0.3, 0.5 and 0.7, the substitutions between In3?+? and Fe3?+? into hematite and respectively, In2O3 lattices occur simultaneously. The lattice parameters of ??-Fe2O3 (a and c) and In2O3 (a) vary with milling time. For x = 0.1, Mössbauer spectra were fitted with one, two, or three sextets versus milling time, corresponding to gradual substitution of In3?+? for Fe3?+? in hematite lattice. For x = 0.3, Mössbauer spectra after milling were fitted with three sextets and two quadrupole-split doublets, representing In3?+? substitution of Fe3?+? in hematite lattice and Fe3?+? substitution of In3?+? in two different sites of In2O3 lattice. For x = 0.5 and 0.7, Mössbauer spectra fitting required two sextets and one quadrupole-split doublet, representing coexistence of In3?+? substitution of Fe3?+? in hematite lattice and Fe3?+? substitution of In3?+? in indium oxide lattice. The recoilless fraction studied versus milling time for each molar concentration exhibited low values, consistent with the occurrence of nanoparticles in the system. SEM/EDS measurements revealed that the mechanochemical activation by ball milling produced xIn2O3*(1-x)??-Fe2O3 solid solution system with a wide range of particle size distribution, from nanometer to micrometer, but with a uniform distribution of Fe, In, and O elements.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号