首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32篇
  免费   1篇
化学   24篇
数学   2篇
物理学   7篇
  2022年   1篇
  2018年   1篇
  2017年   1篇
  2016年   2篇
  2014年   5篇
  2013年   3篇
  2011年   2篇
  2008年   4篇
  2007年   3篇
  2006年   1篇
  2005年   1篇
  2001年   1篇
  2000年   3篇
  1996年   1篇
  1995年   1篇
  1990年   1篇
  1989年   1篇
  1977年   1篇
排序方式: 共有33条查询结果,搜索用时 31 毫秒
1.
The complex cis,trans,cis-[PtCl(2)(OAc)(2)NH(3)(c-C(6)H(11)NH(2))] (JM-216) is currently undergoing clinical evaluation as an antitumor agent. In support of characterization and analysis of this complex a study of its isomers and other complexes [PtCl(m)()(OAc)((4)(-)(m)()())NH(3)(c-C(6)H(11)NH(2))] (m = 0-4) has been undertaken. The complexes have been obtained by a variety of synthetic routes which now extend the scope for the preparation of platinum(IV) antitumor complexes. As platinum(IV) complexes are very stable to substitution in the absence of catalysis, use has been made of both light and base catalysis to promote substitution. Oxidative addition to platinum(II) using hypervalent iodine reagents has also been used. The stereochemistry of the complexes has been confirmed by spectroscopic studies, primarily NMR including natural abundance (15)N NMR spectroscopy.  相似文献   
2.
Appropriate experimental platforms are required to clarify the structure–function relationships of membrane protein assemblies. In photosynthetic bacteria, light-harvesting complex 2 and light-harvesting/reaction center core complex play key roles in capturing and transferring light energy and facilitating subsequent charge separation. These photosynthetic apparatuses form a supramolecular assembly in the photosynthetic membrane. However, the mechanism through which this assembly influences the efficiency of energy conversion remains to be clarified. We review our recent studies that were conducted to evaluate the structure–function relationship of the supramolecular assembly of photosynthetic antenna complexes in various lipid bilayer systems, as well as the construction of novel systems of planar lipid membranes for use as experimental platforms.  相似文献   
3.
A new method of optical guidance by the implosion phase of a fast Z-pinch discharge in a gas-filled capillary is proposed. An imploding plasma column has a concave electron-density profile in the radial direction, just before a stagnation phase driven by a converging current sheet and a shock wave. The feasibility of optical guidance of a high-intensity (>1 x 10(17) W/cm(2)) Ti:sapphire laser pulse by use of this method over a distance of 2 cm, corresponding to 12.5 times the Rayleigh length, has been experimentally demonstrated. The guiding-channel formation process was directly probed with a He-Ne laser beam. The electron density in the fully ionized channel was estimated to be 2.0 x 10(17) cm(-3) on the axis and 7.0 x 10(17) cm(-3) on the peaks of the channel edge, with a diameter of 70 mum, as indicated by the experimental results, which were corroborated by a magnetohydrodynamics simulation.  相似文献   
4.
Dialkyl disulfide-linked naphthoquinone, (NQ-Cn-S)2, and anthraquinone, (AQ-Cn-S)2, derivatives with different spacer alkyl chains (Cn: n = 2, 6, 12) were synthesized and these quinone derivatives were self-assembled on a gold electrode. The formation of self-assembled monolayers (SAMs) of these derivatives on a gold electrode was confirmed by infrared reflection-absorption spectroscopy (IR-RAS). Electron transfer between the derivatives and the gold electrode was studied by cyclic voltammetry. On the cyclic voltammogram a reversible redox reaction between quinone (Q) and hydroquinone (QH2) was clearly observed under an aqueous condition. The formal potentials for NQ and AQ derivatives were −0.48 and −0.58 V, respectively, that did not depend on the spacer length. The oxidation and reduction peak currents were strongly dependent on the spacer alkyl chain length. The redox behavior of quinone derivatives depended on the pH condition of the buffer solution. The pH dependence was in agreement with a theoretical value of E1/2 (mV) = E′ − 59pH for 2H+/2e process in the pH range 3–11. In the range higher than pH 11, the value was estimated with E1/2 (mV) = E′ − 30pH , which may correspond to H+/2e process. The tunneling barrier coefficients (β) for NQ and AQ SAMs were determined to be 0.12 and 0.73 per methylene group (CH2), respectively. Comparison of the structures and the alkyl chain length of quinones derivatives on these electron transfers on the electrode is made.  相似文献   
5.
The feasibility of the laser photocathode RF gun, BNL/GUN-IV, as an injector for a laser plasma accelerator was investigated at the subpicosecond S-band twin linac system of the Nuclear Engineering Research Laboratory, University of Tokyo. Electron beam energy of 16 MeV, emittance of 6π mm mrad, bunch length of 240 fs (FWHM), and charge per bunch of 350 pC were confirmed at 10 Hz. As for diagnosis of the femtosecond electron bunch, the quantitative comparison of performance of the femtosecond streak camera, the coherent transition radiation (CTR) Michelson interferometer, and the far-infrared polychromator was carried out. We concluded that the streak camera is the most reliable up to 200 fs and that the polychromator is the best for the shorter electron bunch. The 3.5-ps (rms) resolved synchronization between the YLF laser driver for the gun and the electron bunch was achieved. Based on the above experiences, we have designed and installed a much better laser-electron synchronization system using the Kerr-lens mode-locked Ti:Sapphire laser with the min harmonics synchrolocker and the stable 15-MW klystron. The timing jitter is expected to be suppressed down to 320 fs (rms)  相似文献   
6.
Photosystem II (PSII) has attracted a lot of attention for use in the construction of artificial photosynthetic materials due to its high activity of oxidation of water molecules. However, the robustness of PSII needs to be improved for in vitro application. In this study, we incorporated PSII (Thermosynechococcus vulcanus) into various phospholipid membranes to examine the activity and durability of oxygen evolution. PSII was incorporated into anionic 1,2-dioleoyl-sn-glycero-3-phospho-(1′-rac-glycerol) (PSII-DOPG), zwitterionic 1,2-dioleoyl-sn-glycero-3-phosphocholine (PSII-DOPC), and cationic 1,2-dioleoyl-sn-glycero-3-ethylphosphocholine (PSII-EDOPC). Structural integrity of PSII was examined by absorption and fluorescence spectroscopy. Compared with PSII dissolved in a micellar solution of n-dodecyl-β-d-maltoside (PSII-micelle), durability of PSII-DOPC and PSII-DOPG were enhanced by 1.3- and 1.5-fold, respectively. The activity and durability of PSII-EDOPC was significantly low. Lipid-dependent activity and durability were discussed in terms of kinetic parameters of V max and K m, and inhibition of the electron acceptor, phenyl-p-benzoquinone.  相似文献   
7.
The fluorescence excitation spectrum of a single chromophore molecule in a photosynthetic pigment-protein complex is known to change in time at liquid helium temperature. The spectral change reflects a conformational change of the protein to which the chromophore binds. This work follows the temporal behavior of the spectrum of a single chromophore in the temperature range between 5 adn 18 K. The temperature dependence reveals two types of conformational change of the protein, i.e., thermally activated motions over a potential barrier of ca. 0.1 kJ/mol and temperature-independent motions of tunneling of a proton.  相似文献   
8.
Phospholipid-linked naphthoquinones separated by spacer methylene groups (C(n)), PE-C(n)-NQ (n=0, 5, 11), were synthesized to investigate the quinone-mediated electron transfers on a glassy carbon (GC) electrode covered with phospholipids membrane. The PE-C(n)-NQ could be incorporated in lipid bilayer composed of phosphatidylcholine and exhibited characteristic absorption spectral change corresponding to their redox state, quinone/hydroquinone. The cyclic voltammogram of PE-C(n)-NQ-containing lipid bilayer modified on a GC electrode indicated a set of waves corresponding to the consecutive two-electron and two-proton transfer reduction of the quinone moiety. The peak currents of PE-C(n)-NQ as a function of temperature showed a sharp break point in the current-temperature behavior, reflecting the gel-fluid phase transition. The shape of the cyclic voltammograms changed with the pH of the buffer solution. Below pH 6 the first step of the reduction of quinone was a monoprotonation of quinone, whereas above pH 10 the first step of the oxidation was a monodeprotonation of hydroquinone. This indicates that reaction sequences of quinone/hydroquinone were different with the change of the pH. These results showed that the PE-C(n)-NQ exhibited electron transfer associated with proton transfer in the lipid membranes, depending on the diffusivity of the redox species in the membrane and pH. Interestingly, less effect of the number of methylene of the spacer group on the peak currents was observed. Comparison of manganese porphyrin-mediated electron transfer that depends on the spacer methylene lengths [M. Nango, T. Hikita, T. Nakano, T. Yamada, M. Nagata, Y. Kurono, T. Ohtsuka, Langmuir 14 (1998) 407] is made.  相似文献   
9.
In recent years, a number of light-induced hydrogen production systems composed of photosystem I (PSI) and hydrogen production catalysts (e.g. hydrogenases and Pt nanoparticles) have been reported. However, the utility of these systems under aerobic conditions is limited due to their poor stability in the presence of oxygen. The development of light-induced hydrogen production systems that work under aerobic conditions is, therefore, of great importance to establish artificial photosynthetic devices. Ideally, these systems should utilise water as an electron source, via water splitting by photosystem II (PSII). We report the construction of a novel light-induced hydrogen production system composed of PSI-platinum nanoparticle conjugates and cytochrome c 6 (cyt c 6) immobilised in nanoporous glass plates (PGP50, 50-nm pore diameter). PSI trimer (PSIt) from Thermosynechococcus elongatus and Pt nanoparticles (PtNPs) were conjugated via electrostatic interactions (PSIt-PtNP). PSIt-PtNP and cyt c 6 were spontaneously absorbed in nanopores of PGP50 without denaturation. Upon irradiation in the presence of ascorbate as a sacrificial electron donor, catalytic H2 evolution was observed for PSIt-PtNP immobilised in the pores of PGP50 (PSIt-PtNP/PGP50) under both anaerobic and aerobic conditions, indicating that an effective photoinduced electron transfer system had been established. PSIt-PtNP/PGP50 was found to exhibit improved oxygen resistivity over the homogeneous solution system consisting of PSIt-PtNP, cyt c 6, and ascorbate, suggesting that the PSIt-PtNP/PGP50 system could be a potential candidate for artificial photosynthetic systems. The distribution of the components, PSIt-PtNP and cyt c 6, in PGP50 was characterised to discuss the efficiency of light-induced hydrogen production.  相似文献   
10.
We reported here that polyethylene glycol (PEG)-linked manganese pyrochlorophyllide a (PEG-MnPChlide a) possesses remarkable catalytic activity comparable to horseradish peroxidase (HRP). The PEG-MnPChlide a catalyzed the oxidation decoloration reaction of C.I. Acid Orange 7 by hydrogen peroxide under a mild aqueous condition, pH 8.0 at 25 °C. The manganese pyrochlorophyride a methylester (MnPChlide a ME) dissolved in a Triton X-100 micellar solution also exhibited the catalytic activity, indicating the micellar environment plays an important role in the catalytic reaction. The reaction rate was accelerated by addition of imidazole. The catalytic reactions were analyzed by Michaelis–Menten kinetics, revealing that the higher reactivity of catalyst–substrate complex is responsible for the present catalytic reaction system.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号