首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
化学   8篇
  2022年   1篇
  2020年   1篇
  1999年   3篇
  1995年   1篇
  1992年   1篇
  1991年   1篇
排序方式: 共有8条查询结果,搜索用时 31 毫秒
1
1.
Investigating microfluidic flow profiles is of interest in the microfluidics field for the determination of various characteristics of a lab-on-a-chip system. Microparticle tracking velocimetry uses computational methods upon recording video footage of microfluidic flow to ultimately visualize motion within a microfluidic system across all frames of a video. Current methods are computationally expensive or require extensive instrumentation. A computational method suited to microparticle tracking applications is the robust Kanade–Lucas–Tomasi (KLT) feature-tracking algorithm. This work explores a microparticle tracking velocimetry program using the KLT feature-tracking algorithm. The developed program is demonstrated using pressure-driven and EOF and compared with the respective mathematical fluid flow models. An electrostatics analysis of EOF conditions is performed in the development of the mathematical using a Poisson's Equation solver. This analysis is used to quantify the zeta potential of the electroosmotic system. Overall, the KLT feature-tracking algorithm presented in this work proved to be highly reliable and computationally efficient for investigations of pressure-driven and EOF in a microfluidic system.  相似文献   
2.
Flavonoids, the dominant colouring pigments of plants, as well as the related polyphenol tannic acid significantly inhibit single-strand breaks in plasmid pBR322 DNA induced by singlet molecular oxygen (1O2). This reactive species of oxygen was generated in an aqueous buffer system by the thermal dissociation of the endoperoxide of 3,3′-(1,4-naphthylene)dipropionate. Among the antioxidants examined, myricetin showed the highest protective ability, followed by tannic acid, (+) catechin, rutin, fisetin, luteolin and apigenin, when the inhibitory abilities were compared at 90 min after incubation. The protective abilities of these compounds were both time and concentration dependent. At equimolar concentrations (100 μM) the antioxidant effect of myricetin was better than that of other known antioxidants such as lipoate, -tocopherol and β-carotene. Data, when analysed in relation to the structures of various compounds, showed a rough correlation with protective abilities. Owing to the abundance of these compounds in our normal diet, they may play significant roles in preventing oxidative damage resulting from potentially deleterious 1O2.  相似文献   
3.
Novel synthetic polyene polyketones and new synthetic capsorubin isomers were examined for their ability to quench singlet molecular oxygen (1O2) generated by the thermodissociation of the endoperoxide of 3,3'-(1,4-naphthylene) dipropionate (NDPO2). C28-polyene-tetrone (1) exhibits the highest physical quenching rate constant with 1O2 (kq = 16 x 10(9) M-1 s-1). For comparison, the rate constant for the most efficient biological carotenoid, lycopene (3) is kq = 9 x 10(9) M-1 s-1 and that of beta-carotene (5) kq = 5 x 10(9) M-1 s-1. The presence of two oxalyl chromophores at the ends of the polyene chain seems to enhance the 1O2 quenching ability in the C28-polyene-tetrone (1). C28-polyene-tetrone-diacetal (2) (kq = 9 x 10(9) M-1 s-1) and C40-epiisocapsorubin (4) (kq = 8 x 10(9) M-1 s-1) also have high 1O2 quenching abilities. Two carotenoids from plants, phytoene and phytofluene, were much less efficient, kq values being below 10(7) M-1 s-1. Due to the very high singlet oxygen quenching abilities, C28-polyene-tetrone (1), C28-polyene-tetrone-diacetal (2) and C40-epiisocapsorubin (4) may have potential use in preventing 1O2-induced damage in biological and non-biological systems.  相似文献   
4.
This paper presents an inexpensive and easy-to-implement voltage sequencer instrument for use in microchip capillary electrophoresis (MCE) actuation. The voltage sequencer instrument takes a 0–5 V input signal from a microcontroller and produces a reciprocally proportional voltage signal with the capability to achieve the voltages required for MCE actuation. The unit developed in this work features four independent voltage channels, measures 105 × 143 × 45 mm (width × length × height), and the cost to assemble is under 60 USD. The system is controlled by a peripheral interface controller and commands are given via universal serial bus connection to a personal computer running a command line graphical user interface. The performance of the voltage sequencer is demonstrated by its integration with a fluorescence spectroscopy MCE sensor using pinched sample injection and electrophoretic separation to detect ciprofloxacin in samples of milk. This application is chosen as it is particularly important for the dairy industry, where fines and health concerns are associated with the shipping of antibiotic-contaminated milk. The voltage sequencer instrument presented represents an effective low-cost instrumentation method for conducting MCE, thereby making these experiments accessible and affordable for use in industries such as the dairy industry.  相似文献   
5.
Free radical reactions of dehydrozingerone (DZ), a methoxy phenol, were studied at dfferent pHs with a variety of oxidants using nanosecond pulse radiolysis technique. Hydroxyl radical (OH) reaction with the phenolic form at pH 6 led mainly to the formation of an OH-adduct absorbing at 460 nm in addition to a minor oxidation product. On the other hand, at pH 10 with the deprotonated phenoxide ion, the only reaction observable was oxidation generating a phenoxyl radical absorbing at 360 nm. HPLC analysis indicated formation of two different products at pH 6 from addition and oxidation reactions, whereas at pH 10, only the oxidation product was detectable. Reactions of more specific secondary oxidizing radicals, N3√, Br√, Br2√ and Tl(II) with DZ gave rise to the phenoxyl radical over the entire pH range. DZ in the phenoxide ion form reacted with nitrogen dioxide and trichloromethyl peroxyl radicals with rate constants 6×108 and 8.8×108 dm3 mol−1 s−1 respectively leading to the phenoxyl radicals. The DZ phenoxyl radical reacted with trolox C (an analogue of -tocopherol) with a rate constant of 8.3×107 dm3 mol−1 s−1. One electron reduction potential of the DZ phenoxyl radical at pH 6 was determined to be +1.1 V vs NHE using N3√/N3 as the standard couple.  相似文献   
6.
Using mitochondria isolated from Sarcoma 180 ascites tumour in Swiss mice as a model system, we have evaluated the ability of a novel porphyrin, meso-tetrakis[4-(carboxymethyleneoxy)phenyl]porphyrin (H2T4CPP), to induce damage on photosensitization. Oxidative damage to mitochondria, one of the primary and crucial targets of the photodynamic effect, is assessed by measuring products of lipid peroxidation such as thiobarbituric acid reactive substances (TBARS) and lipid hydroperoxides (LOOH), besides the loss of activity of the mitochondrial marker enzyme succinate dehydrogenase (SDH). Analysis of product formation, the effect of deuteration and selective inhibition by scavengers of reactive oxygen species (ROS) show that the damage observed is due mainly to singlet oxygen (1O2) and to a minor extent to hydroxyl radicals (OH). The 1O2 generation and triplet lifetime of this porphyrin have also been estimated. Fluorescence spectroscopy, used to ascertain the binding of this porphyrin to the mitochondrial proteins, shows a rapid association within 0–2 h and a decline thereafter. Confocal microscopy reveals intracellular localisation of this porphyrin in cells in vitro. Our overall results suggest that the porphyrin H2T4CPP, due to its ability to bind to mitochondrial protein components and to generate ROS upon photoexcitation, may have potential applications in photodynamic therapy.  相似文献   
7.
Using mitochondria isolated from Sarcoma 180 ascites tumour in Swiss mice as a model system, we have evaluated the ability of a novel porphyrin, meso-tetrakis[4-(carboxymethyleneoxy)phenyl]porphyrin (H2T4CPP), to induce damage on photosensitization. Oxidative damage to mitochondria, one of the primary and crucial targets of the photodynamic effect, is assessed by measuring products of lipid peroxidation such as thiobarbituric acid reactive substances (TBARS) and lipid hydroperoxides (LOOH), besides the loss of activity of the mitochondrial marker enzyme succinate dehydrogenase (SDH). Analysis of product formation, the effect of deuteration and selective inhibition by scavengers of reactive oxygen species (ROS) show that the damage observed is due mainly to singlet oxygen (1O2) and to a minor extent to hydroxyl radicals (OH). The 1O2 generation and triplet lifetime of this porphyrin have also been estimated. Fluorescence spectroscopy, used to ascertain the binding of this porphyrin to the mitochondrial proteins, shows a rapid association within 0–2 h and a decline thereafter. Confocal microscopy reveals intracellular localisation of this porphyrin in cells in vitro. Our overall results suggest that the porphyrin H2T4CPP, due to its ability to bind to mitochondrial protein components and to generate ROS upon photoexcitation, may have potential applications in photodynamic therapy.  相似文献   
8.
Singlet molecular oxygen O2(1 delta g) arising from the thermodissociation of the endoperoxide of 3,3'-(1,4-naphthylidene) dipropionate (NDPO2) was used to assess the quenching ability of various thiols and related compounds in sodium phosphate buffer in D2O at 37 degrees C. The overall quenching ability decreases in the sequence ergothioneine, methionine, cysteine, beta,beta-dimethyl cysteine (penicillamine), mercaptopropionylglycine, mesna, glutathione (GSH), dithiothreitol, N-acetyl cysteine and captopril. Cystine, glutathione disulphide, dimesna, methionine sulphone and methionine sulphoxide have no quenching effect. Comparison of the rate constants for physical (kq) with chemical (kr) quenching by thiols indicates that chemical reactivity accounts fully for their ability to quench O2(1 delta g), and pD dependence indicates that the thiolate anion reacts with O2(1 delta g). Loss of thiol groups, as exemplified by GSH, is not affected by the free radical scavengers superoxide dismutase and mannitol. However, sodium azide, a scavenger of O2(1 delta g), completely prevents NDPO2-induced thiol depletion. Depletion of GSH by NDPO2 is accompanied by the formation of its disulphide, sulphinate, sulphonate, sulphoxide and other products.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号