首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   40篇
  免费   1篇
化学   21篇
晶体学   2篇
数学   1篇
物理学   17篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2018年   2篇
  2014年   3篇
  2011年   3篇
  2009年   3篇
  2008年   1篇
  2007年   5篇
  2006年   4篇
  2003年   1篇
  2002年   1篇
  2001年   3篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1993年   1篇
  1989年   2篇
  1987年   1篇
  1982年   1篇
  1980年   2篇
  1979年   1篇
排序方式: 共有41条查询结果,搜索用时 15 毫秒
1.
Heavy ion irradiation in the electronic stopping power region induces macroscopic dimensional change in metallic glasses and introduces magnetic anisotropy in some magnetic materials. The present work is on the irradiation study of ferromagnetic metallic glasses, where both dimensional change and modification of magnetic anisotropy are expected. Magnetic anisotropy was measured using Mössbauer spectroscopy of virgin and irradiated Fe40Ni40B20 and Fe40Ni38Mo4B18 metallic glass ribbons. 90 MeV 127I beam was used for the irradiations. Irradiation doses were 5×1013 and 7.5×1013 ions/cm2. The relative intensity ratios D 23 of the second and third lines of the Mössbauer spectra were measured to determine the magnetic anisotropy. The virgin samples of both the materials display in-plane magnetic anisotropy, i.e., the spins are oriented parallel to the ribbon plane. Irradiation is found to cause reduction in magnetic anisotropy. Near-complete randomization of magnetic moments is observed at high irradiation doses. Correlation is found between the residual stresses introduced by ion irradiation and the change in magnetic anisotropy.  相似文献   
2.
Carbonized lignin has been proposed as a sustainable and domestic source of activated, amorphous, graphitic, and nanostructured carbon for many industrial applications as the structure can be tuned through processing conditions. However, the inherent variability of lignin and its complex physicochemical structure resulting from feedstock and pulping selection make the Process-Structure-Property-Performance (PSPP) relationships hard to define. In this work, radial distribution functions (RDFs) from synchrotron X-ray and neutron scattering of lignin-based carbon composites (LBCCs) are investigated using the Hierarchical Decomposition of the Radial Distribution Function (HDRDF) modelling method to characterize the local atomic environment and develop quantitative PSPP relationships. PSPP relationships for LBCCs defined by this work include crystallite size dependence on lignin feedstock as well as increasing crystalline volume fraction, nanoscale composite density, and crystallite size with increasing reduction temperature.  相似文献   
3.
Nucleation and growth methods offer scalable means of synthesizing colloidal particles with precisely specified size for applications in chemical research, industry, and medicine. These methods have been used to prepare a class of silicone gel particles that display a range of programmable properties and narrow size distributions. The acoustic contrast factor of these particles in water is estimated and can be tuned such that the particles undergo acoustophoresis to either the pressure nodes or antinodes of acoustic standing waves. These particles can be synthesized to display surface functional groups that can be covalently modified for a range of bioanalytical and acoustophoretic sorting applications.  相似文献   
4.
Molecular clips hold the potential of self-association and the ability to form host–guest complexes. Here we describe the synthesis of a 1,2-dimethoxyphenyl terminated glycoluril molecular clip (2) that binds with smaller solvent molecules by π?H–C and C=O?H–O non-covalent interactions. We obtained single crystals of 2 and 2 + CH2Cl2, CH3OH, CH3CN, and DMF solvents complexed within the clip. These solvents always form two π?H–C interactions between the aromatic rings in the clip, and CH3OH formed an additional C=O?H–O hydrogen bond with the glycoluril carbonyl group. Based on single crystal data we found that π?H–C interactions of 2 + CH2Cl2 are stronger than 2 + CH3CN and 2?+?DMF, due to the presence of stronger electron withdrawing groups in CH2Cl2, which lead to a decrease in dihedral angle of two glycoluril aromatic planes. We also investigated the non-covalent interaction energies of these solvent molecules with 2 using computational methods.

Graphical Abstract

Several solvent adducts of a glycoluril derivative have been isolated and characterized by single crystal X-ray diffraction, revealing two common pi?H–C non-covalent bonds within the molecular clip.
  相似文献   
5.
DC Jana  SS Pradhan 《Pramana》2001,56(1):107-115
In subnormal glow discharge under d.c. excitation at different pressure in a varying transverse magnetic field (0 to 30 G) some measurements have been carried out for various initial average tube currents. The voltage across the discharge increases and average tube current and residual current decreases in the magnetic field. With the help of Beckman’s expression [4] for the axial field and the electron density distribution in a transverse magnetic field the observed variation of current and voltage can be satisfactorily explained. The variation of axial electric field with transverse magnetic field can be represented to a fair degree of accuracy by the derived equation. The behaviour of residual current with magnetic field has been observed in these oscillations.  相似文献   
6.
The pyrolysis of 2-phenethyl phenyl ether (PPE, C(6)H(5)C(2)H(4)OC(6)H(5)) in a hyperthermal nozzle (300-1350 °C) was studied to determine the importance of concerted and homolytic unimolecular decomposition pathways. Short residence times (<100 μs) and low concentrations in this reactor allowed the direct detection of the initial reaction products from thermolysis. Reactants, radicals, and most products were detected with photoionization (10.5 eV) time-of-flight mass spectrometry (PIMS). Detection of phenoxy radical, cyclopentadienyl radical, benzyl radical, and benzene suggest the formation of product by the homolytic scission of the C(6)H(5)C(2)H(4)-OC(6)H(5) and C(6)H(5)CH(2)-CH(2)OC(6)H(5) bonds. The detection of phenol and styrene suggests decomposition by a concerted reaction mechanism. Phenyl ethyl ether (PEE, C(6)H(5)OC(2)H(5)) pyrolysis was also studied using PIMS and using cryogenic matrix-isolated infrared spectroscopy (matrix-IR). The results for PEE also indicate the presence of both homolytic bond breaking and concerted decomposition reactions. Quantum mechanical calculations using CBS-QB3 were conducted, and the results were used with transition state theory (TST) to estimate the rate constants for the different reaction pathways. The results are consistent with the experimental measurements and suggest that the concerted retro-ene and Maccoll reactions are dominant at low temperatures (below 1000 °C), whereas the contribution of the C(6)H(5)C(2)H(4)-OC(6)H(5) homolytic bond scission reaction increases at higher temperatures (above 1000 °C).  相似文献   
7.
8.
In ultrasonic molecular imaging, encapsulated micron-sized gas bubbles are tethered to a blood vessel wall by targeting ligands. A challenging problem is to detect the echoes from adherent microbubbles and distinguish them from echoes from nonadherent agents and tissue. Echoes from adherent contrast agents are observed to include a high amplitude at the fundamental frequency, and significantly different spectral shape compared with free agents (p <0.0003). Mechanisms for the observed acoustical difference and potential techniques to utilize these differences for molecular imaging are proposed.  相似文献   
9.
This paper presents a new manufacturing method to generate monodisperse microbubble contrast agents with polydispersity index (sigma) values of <2% through microfluidic flow-focusing. Micron-sized lipid shell-based perfluorocarbon (PFC) gas microbubbles for use as ultrasound contrast agents were produced using this method. The poly(dimethylsiloxane) (PDMS)-based devices feature expanding nozzle geometry with a 7 microm orifice width, and are robust enough for consistent production of microbubbles with runtimes lasting several hours. With high-speed imaging, we characterized relationships between channel geometry, liquid flow rate Q, and gas pressure P in controlling bubble sizes. By a simple optimization of the channel geometry and Q and P, bubbles with a mean diameter of <5 microm can be obtained, ideal for various ultrasonic imaging applications. This method demonstrates the potential of microfluidics as an efficient means for custom-designing ultrasound contrast agents with precise size distributions, different gas compositions and new shell materials for stabilization, and for future targeted imaging and therapeutic applications.  相似文献   
10.
Electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI-FTICRMS) has been used to determine the mass of a double-stranded 500 base-pair (bp) polymerase chain reaction (PCR) product with an average theoretical mass of the blunt-ended (i.e. unadenylated) species of 308 859.35 Da. The PCR product was generated from the linearized bacteriophage Lambda genome which is a double-stranded template. Utilization of ethanol precipitation in tandem with a rapid microdialysis step to purify and desalt the PCR product was crucial to obtain a precise mass measurement. The PCR product (0.8 pmol/μL) was electrosprayed from a solution containing 75% acetonitrile, 25 mM piperidine, and 25 mM imidazole and was infused at a rate of 200 nL/min. The average molecular mass and the corresponding precision were determined using the charge-states ranging from 172 to 235 net negative charges. The experimental mass and corresponding precision (reported as the 95% confidence interval of the mean) was 309 406 +/- 27 Da (87 ppm). The mass accuracy was compromised due to the fact that the PCR generates multiple products when using Taq polymerase due to the non-template directed 3'-adenylation. This results in a mixture of three PCR products with nearly identical mass (i.e. blunt-ended, mono-adenylated and di-adenylated) with unknown relative abundances that were not resolved in the spectrum. Thus, the experimental mass will be a weighted average of the three species which, under our experimental conditions, reflects a nearly equal concentration of the mono- and di-adenylated species. This report demonstrates that precise mass measurements of PCR products up to 309 kDa (500 bp) can be routinely obtained by ESI-FTICR requiring low femtomole amounts. Copyright 1999 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号