首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   0篇
化学   5篇
物理学   10篇
  2011年   1篇
  2010年   1篇
  2008年   1篇
  2006年   1篇
  2003年   1篇
  2000年   1篇
  1996年   3篇
  1994年   2篇
  1992年   3篇
  1980年   1篇
排序方式: 共有15条查询结果,搜索用时 31 毫秒
1.
Europium (Eu+) ions were confined in a Paul trap and detected by non-destructive method. Storage time of Eu+ ions achieved in vacuum was improved by orders of magnitude employing buffer gas cooling. The experimentally detected signal was fitted to the ion response signal and the total number of ions trapped was estimated. It is found that the peak signal amplitude as well as the product of FWHM and the peak signal amplitude is proportional to the total number of trapped ions. The trapped ion secular frequency was swept at different rates and its effect on the absorption line profile was studied both experimentally and theoretically.  相似文献   
2.
3.
After the publication of the work entitled "Dermatan sulfate in tunicate phylogeny: Order-specific sulfation pattern and the effect of [→4IdoA(2-Sulfate)β-1→3GalNAc(4-Sulfate)β-1→] motifs in dermatan sulfate on heparin cofactor II activity", by Kozlowski et al., BMC Biochemistry 2011, 12:29, we found that the legends to Figures 2 to 5 contain serious mistakes that compromise the comprehension of the work. This correction article contains the correct text of the legends to Figures 2 to 5.  相似文献   
4.
5.
6.
The gingipains are cell surface Arg- and Lys-specific proteinases of the bacterium Porphyromons gingivalis, which has been associated with periodontitis, a disease that results in the destruction of the teeth-s supporting tissues. The proteinases are encoded by three genes designated rgpA, rgpB and kgp. Arg-specific proteolytic activity is encoded by rgpA/B and the Lys-specific activity by kgp. RgpA and Kgp are polyproteins comprising proteinases with C-terminal adhesin domains that are proteolytically processed. After processing, the domains remain non-covalently associated as complexes on the cell surface. RgpB is also a cell surface proteinase but does not associate with adhesin domains. Using gene knockout P. gingivalis mutants, the proteolytic processing of the gingipain domains has been shown to involve the gingipains themselves as well as C-terminal processing by a carboxypeptidase. A motif in the C-terminal domain of each protein/polyprotein has been identified that is suggested to be involved in attachment to LPS on the cell surface. RgpB lacks a C-terminal adhesin binding motif found in the catalytic domains of RgpA and Kgp. This adhesin binding motif is proposed to be responsible for the non-covalent association of the RgpA and Kgp catalytic domains into the cell surface complexes with the processed adhesin domains. The RgpA-Kgp proteinase-adhesin complexes, through the adhesin domains A1 and A3, have been implicated in colonization of P. gingivalis by binding to other bacteria in subgingival plaque and also binding to crevicular epithelial cells. The RgpA-Kgp complexes also bind to fibrinogen, laminin, collagen type V, fibronectin and hemoglobin. Amino acid sequences likely to be involved in binding to these host proteins have been identified in adhesin domains A1 and A3. It is proposed that these adhesins target the proteolytic activity to host cell surface matrix proteins and receptors. The continual cycle of binding and degradation of the surface proteins/receptors on epithelial, fibroblast and endothelial cells by the RgpA-Kgp complexes in the gingival tissue leading to cell death would contribute to inflammation, tissue destruction and vascular disruption (bleeding). P. gingivalis has an obligate growth requirement for iron and protoporphyrin IX, which it preferentially utilizes in the form of hemoglobin. Kgp proteolytic activity is essential for rapid hydrolysis of hemoglobin and it is suggested therefore that a major role of the RgpA-Kgp complexes is in vascular disruption and the binding and rapid degradation of hemoglobin for heme assimilation by P. gingivalis. The RgpA-Kgp complexes also have a major role in the evasion and dysregulation of the host-s immune response. It is proposed that host pro-inflammatory cytokines and cellular receptors close to the infection site may be rapidly and efficiently degraded by the gingipains while the proteinases at lower concentrations distally could result in the promotion of an inflammatory response through activation of proteinase-activated receptors and cytokine release. The culmination of this dysregulation would be tissue destruction and bone resorption. In animal models of disease the RgpA-Kgp complex when used as a vaccine to produce a high titre antibody response protects against challenge with P. gingivalis. Using recombinant domains of RgpA and Kgp as vaccines, it has been demonstrated that the A1 and A3 domains confer protection.  相似文献   
7.
Cysteine proteases are one of the largest groups of proteases and are involved in many important biological functions in all kingdoms of life. They are virulence factors of a range of eukaryotic, bacterial and viral pathogens and are involved in host invasion, pathogen replication and disruption of the host immune response. Their activity is regulated by a range of protease inhibitors. This review discusses the various families of cysteine protease inhibitors, their different modes of inhibition and their evolutionary relationships. These inhibitors as well as the recent discovery of propeptide and propeptide-like inhibitors provide insights into the structures that are important for particular inhibitory mechanisms, thus forming the foundation for the design of future therapeutics.  相似文献   
8.
Three sharp absorption features in the energy range 2.36–2.55 eV have been detected in the transmission spectrum of Co-diffused ZnSe, and a number of luminescence transitions originating from the lowest of these states at 2.361 eV have been observed. Photoluminescence excitation spectra prove that these are high energy excited states of the Co2+Zn impurity, a conclusion confirmed by comparison of measured and predicted luminescence energies. This represents the first identification of luminescence branching from a higher excited state of a transition metal ion in any semiconductor. The sharp, weakly phonon-coupled transitions involve either intra-impurity excitation or transitions from the impurity to localised states split off from a minimum in the conduction band. The implications of these observations for the mechanism of host-impurity energy transfer and for the nature of the excited state wavefunctions are discussed.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号