首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24篇
  免费   0篇
化学   15篇
数学   3篇
物理学   6篇
  2011年   1篇
  2010年   1篇
  2008年   3篇
  2007年   2篇
  2006年   4篇
  2004年   1篇
  2003年   1篇
  2002年   3篇
  2000年   2篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1993年   1篇
  1992年   1篇
  1971年   1篇
排序方式: 共有24条查询结果,搜索用时 11 毫秒
1.
2.
Computational studies have been used to examine the structural and energetic effects of adding small numbers of water molecules to ammonia, methylamine, dimethylamine, and trimethylamine, and their respective ammoniums ions using the effective fragment potential method. Distinct structural effects with only a few fragment water molecules are revealed. The complexity of structures increases with the number of water fragments with the water fragments forming complex networks. Structural and energetic effects are used to probe the so-called anomalous basicity effect of ammonia and the methylamines on going from the gas phase to aqueous solution.  相似文献   
3.
4.
The temperature-isotope dependence of proton-coupled electron transfer (PCET) for a noncovalent molecular dyad is reported. The system consists of an excited-state Zn(II) porphyrin that transfers an electron to a naphthalene diimide acceptor through an amidinium-carboxylate interface. Two different isotope effects are observed for variant temperature regimes. A reverse isotope effect (i.e., kH/kD < 1) is observed as T approaches 120 K (kH/kD = 0.9, 120 K), whereas a normal isotope effect (i.e., kH/kD > 1) is recovered as the temperature is increased (kH/kD = 1.2, 300 K). The transition between these limits is smooth, with a crossover temperature of T approximately 160 K. These observations are in accordance with charge-transfer dynamics that are susceptible to bath-induced fluctuations in the proton coordinate.  相似文献   
5.
To design methodologies that will allow researchers to directly correlate the results of adaptive control experiments with physiochemical control pathways in arbitrary complex molecular systems it is imperative that prototype systems are developed and that exigent control pathways are understood. We have been interested in the results of adaptive control experiments in our laboratory involving the maximization of a ratio of two experimental observables: (1) the thermalized emission from the solution-phase coordination complex [Ru(dpb)3](PF6)2 and (2) the second harmonic signal (a purely intensity-dependent phenomenon) of the shaped laser fields. Using a rational pulse shaping strategy, we have made a measurement of the ratio spectrum (in essence the two-photon absorption cross section) for the molecule [Ru(dpb)3](PF6)2 in a room temperature solution of acetonitrile. This spectrum is highly varied across the accessible two-photon power spectrum of our broad-band laser pulses and demonstrates the existence of a control pathway wherein a shaped laser field can manipulate excited-state population (with respect to SHG) by conforming to the second-order spectral response of the molecule in solution. We show that our adaptive control algorithm is capable of taking advantage of these control pathways using simulated adaptive control experiments. Finally, we measure second-harmonic spectra of shaped laser fields discovered during an adaptive control experiment and show that these agree with simulation. These results suggest that our adaptive control experiment can be understood in the context of the elucidated spectral control pathway.  相似文献   
6.
7.

Background  

Genetically manipulated embryonic stem (ES) cell derived neurons (ESNs) provide a powerful system with which to study the consequences of gene manipulation in mature, synaptically connected neurons in vitro. Here we report a study of focal adhesion kinase (FAK), which has been implicated in synapse formation and regulation of ion channels, using the ESN system to circumvent the embryonic lethality of homozygous FAK mutant mice.  相似文献   
8.
Energy wasting charge recombination is an efficiency limiting process in efforts to achieve solar energy storage. Here, density functional theory is used to explore the thermodynamics of photochemical energy storage reactions in several ruthenium polypyridyl complexes where heterolytic halogen-carbon bond scission occurs after light-induced formation of the triplet metal to ligand charge transfer ((3)MLCT) state, as seen in the following reaction: [Ru(II)(A)(n)(L-X)](2+) + hν → [Ru(III)(A)(n)(L-X)(?-)](2+)* → [Ru(III)(A)(n)(L·)](3+) + X(-) (L = polypyridine ligand; X = Cl, Br, and I; A = ancillary ligand). A thermochemical cycle is employed to determine structural and electronic factors influencing ΔE(rxn). Significant energetic penalties in the oxidation of the metal center are mitigated through methylation of ancillary ligands or introduction of amine ancillary ligands. Methylation of the halogenated ligand maintains energy stored in the (3)MLCT state. Reduction in ΔE(rxn) is obtained by exploiting strain in the coordination geometry or in sterically encumbered ligands that is released upon bond breaking. Formation of a contact ion pair is significantly more favorable than complete separation of charged products, and shows negative ΔE with respect to the (3)MLCT state in certain cases. Future tunability in stored energy may be achieved through careful manipulation of ligand structure and charge on ancillary ligands.  相似文献   
9.
The distance dependence of silicon substitution on the electron affinity (EA) of carbon radicals has been studied using computational methods in SiH3(CH2)nCH2 (A) and SiH2F(CH2)nCH2 (B). Large EAs result when n = 0 for both A and B. The result for A is compared with the experimental EA value of (CH3)3SiCH2. Similar comparisons with known EAs (CH3 and SiH3) establish the validity of the computational approach. Fluorine substitution in SiH2FCH2 is consistent with other fluorine substitution effects. When n > 1, the anions of both A and B cyclize to pentacoordinate structures in which silicon has trigonal bipyramidal geometry. The corresponding EA values raise important questions about computed EAs that result from profound geometry changes between radicals and anions. Anions that have not cyclized give rise to EA values more easily interpreted. Such results, combined with computations of vertical attachment energies, indicate that the EA values of A and B attenuate rapidly for n > 1, quickly approaching that of CH3. Pentacoordination effects of silicon anions were also studied for SiH4, (CH3)2SiH2, 1-silacyclopropane, 1-silacyclobutane, and 1-silacyclopentane.  相似文献   
10.
Proton-coupled electron transfer (PCET) kinetics of a Zn(II) porphyrin donor noncovalently bound to a naphthalene-diimide acceptor through an amidinium-carboxylate interface have been investigated by time-resolved spectroscopy. The S1 singlet excited-state of a Zn(II) 2-amidinium-5,10,15,20-tetramesitylporphyrin chloride (ZnP-beta-AmH+) donor is sufficiently energetic (2.04 eV) to reduce a carboxylate-diimide acceptor (DeltaG degrees = -460 mV, THF). Static quenching of the porphyrin fluorescence is observed and time-resolved measurements reveal more than a 3-fold reduction in the S1 lifetime of the porphyrin upon amidinium-carboxylate formation (THF, 298 K). Picosecond transient absorption spectra of the free ZnP-beta-AmH+ in THF reveal the existence of an excited-state isosbestic point between the S1 and T1 states at lambdaprobe = 650 nm, providing an effective 'zero-kinetics' background on which to observe the formation of PCET photoproducts. Distinct rise and decay kinetics are attributed to the build-up and subsequent loss of intermediates resulting from a forward and reverse PCET reaction, respectively (kPCET(fwd) = 9 x 108 s-1 and kPCET(rev) = 14 x 108 s-1). The forward rate constant is nearly 2 orders of magnitude slower than that measured for covalently linked Zn(II) porphyrin-acceptor dyads of comparable driving force and D-A distance, establishing the importance of a proximal proton network in controlling charge transport.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号