首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   1篇
化学   2篇
物理学   1篇
  2020年   1篇
  2016年   1篇
  2012年   1篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
The electronic and optical properties of Cu, CuO and Cu(2)O were studied by x-ray photoelectron spectroscopy (XPS) and reflection electron energy-loss spectroscopy (REELS). We report detailed Cu 2p, Cu LVV, O 1s and O KLL spectra which are in good agreement with previous results. REELS spectra, recorded for primary energies in the range from 150 to 2000 eV, were corrected for multiple inelastically scattered electrons to determine the effective inelastic scattering cross section. The dielectric functions and optical properties were determined by comparing the experimental inelastic electron scattering cross section with a simulated cross section calculated within the semi-classical dielectric response model in which the only input is Im(-1/ε) by using the QUEELS-ε(k,ω)-REELS software package. By Kramers-Kronig transformation of the determined Im(-1/ε), the real and imaginary parts (ε(1) and ε(2)) of the dielectric function, and the refractive index n and extinction coefficient k were determined for Cu, CuO, and Cu(2)O in the 0-100 eV energy range. Observed differences between Cu, CuO and Cu(2)O are mainly due to modifications of the 3d and O 2p electron configurations.  相似文献   
2.
The band alignment and defect states of GaInZnO thin films grown on SiO2/Si via radio frequency (RF) magnetron sputtering were investigated by using X‐ray photoelectron spectroscopy, reflection electron energy loss spectroscopy, thermally stimulated exo‐electron emission and photo‐induced current transient spectroscopy.The band gap via reflection electron energy loss spectroscopy was 3.2 eV. The defect states via photo‐induced current transient spectroscopy and thermally stimulated exo‐electron emission were at 0.24, 0.53, 1.69 and 2.01 eV below the conduction band minimum of GIZO thin films, respectively. The defect states at 0.24 and 0.53 eV are related to the field‐effect mobility, and the defect stated at 1.69 and 2.01 eV is related to the oxygen vacancy defect. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
3.
Stopping power (SP) and inelastic mean free path (IMFP) of electrons in Ti, Fe, Ni, and Pd have been determined by using dielectric models. We have used energy loss function (ELF) determined from quantitative analysis of experimental reflection electron energy loss spectroscopy (REELS) spectra as the input parameter for this model. ELF in this study was determined from the previously published quantitative analysis of REELS spectra. The SP of Fe, Ni, Pd, and Ti was compared with several calculation methods for energies from 100 eV to 10 keV and shows SP in this study, which are in best agreement for medium to high energies (greater than or equal to 300 eV). The IMFP obtained in this study shows the best agreement with online database TPP2M and NIST and also calculation by Tanuma with a root mean square (rms ) less than 12%. The present approach shows ELF from quantitative analysis of REELS spectra has a high potential for the experimental determination of SP and IMFP of metals.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号