首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22篇
  免费   0篇
化学   22篇
  2022年   3篇
  2019年   1篇
  2015年   1篇
  2013年   1篇
  2012年   3篇
  2011年   1篇
  2010年   2篇
  2007年   1篇
  2006年   1篇
  2005年   1篇
  2004年   2篇
  2003年   2篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
排序方式: 共有22条查询结果,搜索用时 0 毫秒
1.
Complexes of the general formulae Mn(2-bpy)2(CCl3COO)2, Co(2-bpy)2(CCl3COO)2·H2O and Ni(2-bpy)2(CCl3COO)2·2H2O (where: 2-bpy=2,2'-bipyridine) have been prepared and characterized by VIS and IR spectroscopy, conductivity and magnetic measurements. The thermal properties of complexes in the solid state were studied under non-isothermal conditions in air atmosphere. During heating the complexes decompose via different intermediate products to the oxides Mn3O4, CoO and NiO. A coupled TG-MS system was used to detection the principal volatile products of thermal decomposition and fragmentation processes of obtained compounds. The principal volatile products of thermal decomposition of complexes are: H2O+, CO2 +, Cl2 + and other. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
2.
Journal of Thermal Analysis and Calorimetry - New complexes with formulae: Ln(4-bpy)(CBr2HCOO)3·3H2O (where Ln(III) = Gd, Tb, Dy) and Er(4-bpy)1.5(CBr2HCOO)3·3H2O, were...  相似文献   
3.
Novel mixed-ligand complexes with empirical formula Ln(4-bpy)2(CCl3COO)3·nH2O [where Ln(III)?=?Dy, Ho, Er, Tm, Yb, Lu; 4-bpy?=?4,4??-bipyridine] were prepared and characterized by chemical and elemental analysis, infrared spectroscopy, and conductivity measurements (in methanol, dimethylformamide, and dimethyl sulfoxide). X-ray powder diffraction patterns indicate that the complexes are small crystalline compounds. IR spectra of complexes show that all carboxylate groups and 4-bpy are engaged in coordination of lanthanide ions. The thermal behavior of complexes was studied by means of TG, DTG, DTA techniques in the solid state under nonisothermal conditions in air atmosphere. During heating, the complexes decompose via intermediate products to the oxide Ln2O3. The combined TG?CFTIR technique was employed to study the decomposition pathway of the Ho(III) and Tm(III) complexes in flowing argon atmosphere.  相似文献   
4.
The complexes with the empirical formula M(4-bipy)(ClCH2COO)2 ×nH2O (where: 4-bipy=4,4'-bipyridine, L=ClCH2 COO, M (II)=Mn, Co, Ni, Cu) were prepared and characterized via the IR and electronic (VIS) spectra and conductivity measurements. Thermal decomposition of these compounds was studied. During heating in air dehydration processes occur. The anhydrous compounds decompose at high temperature to oxides. The principal volatile mass fragments correspond to: H2O, CO2, CH3Cl, HCl, Cl2 and other. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
5.
A novel biologically active thiosemicarbazide derivative ligand L (N-[(phenylcarbamothioyl)amino]pyridine-3-carboxamide) and a series of its five metal(II) complexes, namely: [Co(L)Cl2], [Ni(L)Cl2(H2O)], [Cu(L)Cl2(H2O)], [Zn(L)Cl2] and [Cd(L)Cl2(H2O)] have been synthesized and thoroughly investigated. The physicochemical characterization of the newly obtained compounds has been performed using appropriate analytical techniques, such as 1H and l3C nuclear magnetic resonance (NMR), inductively coupled plasma (ICP), thermogravimetric analysis (TGA), Fourier-transform infrared spectroscopy (FTIR) and magnetic measurements. In order to study the pharmacokinetic profile of the compounds, ADMET analysis was performed. The in vitro studies revealed that the synthesized compounds exhibit potent biological activity against A549 human cancer cell line.  相似文献   
6.
New mixed-ligand complexes with empirical formulae M(4-bpy)L2·1.5H2O (M(II)=Mn, Co), Ni(4-bpy)2L2 and Cu(4-bpy) L2·H2O (where: 4-bpy=4,4'-bipyridine, L=CC L2HCOO-) have been isolated in pure state. The complexes have been characterized by elemental analysis, ir spectroscopy, conductivity (in methanol, dimethylformamide and dimethylsulfoxide solutions) and magnetic and x-ray diffraction measurements. The Mn(II) and Co(II) complexes are isostructural. The way of metal-ligand coordinations discussed. the ir spectra suggest that the carboxylate groups are bonded with metal(II) in the same way (Ni, Cu) or in different way (Mn, Co). The solubility in water is in the order of 19.40·10-3÷1.88·10-3ł mol dm-3ł. During heating the hydrate complexes lose all water in one step. The anhydrous complexes decompose to oxides via several intermediate compounds. A coupled TG-MS system was used to analyse the principal volatile products of obtained complexes. The principal volatile products of thermal decomposition of complexes in air are: H2O2 +, CO2 +, HCl+, Cl2 +, NO+ and other. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
7.
A novel mixed-ligand complexes of Er(III), Yb(III) and Lu(III) with title ligands were prepared and characterized by chemical and elemental analysis and IR spectroscopy, conductivity (in methanol, dimethyloformamide and dimethylsulphoxide). The thermal properties of complexes in the solid state were studied. The mode of metal–ligand coordination was discussed. The title compounds are isomorphic and isostructural in solid state. All atoms in studied compounds lie in general positions but occurrence of inversion on the midpoint of the bond linking two pyridine rings leads to existence in asymmetric unit one complex molecule and half of outer coordination sphere 4-bpy molecule. All chelating carboxylate groups are symmetrically bonded to the metal cations. The molecules of studied compounds are connected to the three dimensional network via O–H···O and O–H···N intermolecular hydrogen bonds. In the structures also exist C–H···O, C–H···Cl weak hydrogen bonds and π····π stacking interactions.  相似文献   
8.
As a result of the synthesis, three new solids, cobalt (II) coordination compounds with benzimidazole derivatives, and chlorides were obtained. The ligands that were used in the synthesis were specially synthesized and were commercially unavailable. During the synthesis, a single crystal of the complex with the L1 ligand was obtained and the crystal structure was refined. All coordination compounds were characterized by elemental analysis, infrared spectroscopy, and thermogravimetric analysis. All the obtained data allowed one to determine the formulas of the new compounds, as well as to determine the method of metal–ligand coordination. Thermal analysis allowed to know the temperature stability of the compounds, solids intermediate and final products of pyrolysis. Additionally, volatile decomposition and fragmentation products have been identified. The toxicity of the compounds and their bioavailability were determined using in silico methods. By predicting activity on cell lines, the potential use of compounds as chemotherapeutic agents has been specified. The blood-brain barrier crossing and the gastrointestinal absorption were defined. Pharmaceutical biodistribution was also simulated.  相似文献   
9.
The new mixed ligand complexes with formulae M(4-bpy)(C2H5COO)2·2H2O (where M(II)=Mn, Co, Ni; 4,4'-bpy or 4-bpy=4,4'-bipyridine) and Cu(4-bpy)0.5(C2H5COO)2·H2O were prepared and characterized by VIS (for solid compounds of Co(II), Ni(II), Cu(II) in Nujol), IR spectroscopy, X-ray powder diffraction and molar conductance in MeOH, DMF or DMSO. Thermal behaviour of complexes was studied under static conditions in air atmosphere. Corresponding metal oxides were identified as final products of pyrolysis. A coupled TG-MS system was used to analysis of principal volatile thermal decomposition and fragmentation products of isolated complexes under dynamic air and argon atmosphere. The principal species correspond to: C+, OH+, H2O+, NO+, CO2 + and other; additionally CO+ in argon atmosphere. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
10.
A novel mixed-ligand complexes with empirical formulae: Dy(4-bpy)(CCl2HCOO)3 · H2O and Ln(4-bpy)1.5(CCl3COO)3 · 2H2O (where Ln(III) = Ce, Nd) were prepared and characterized by chemical and elemental analysis and IR spectroscopy, conductivity (in methanol, dimethyloformamide and dimethylsulfoxide). Analysis of the diffractograms showed that the obtained complexes are crystalline. Way of metal-ligand coordination discussed. The thermal properties of complexes in the solid state were studied under non-isothermal conditions in air atmosphere. During heating the complexes decompose via intermediate products to the oxides: Ln2O3 (Nd, Dy) and CeO2. TG-MS system was used to analyse principal volatile thermal decomposition and fragmentation products evolved during pyrolysis of Dy(4-bpy)(CCl2HCOO)3 · H2O in air.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号