首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   42篇
  免费   2篇
化学   43篇
物理学   1篇
  2023年   1篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2016年   5篇
  2015年   3篇
  2013年   1篇
  2012年   5篇
  2011年   2篇
  2009年   2篇
  2008年   3篇
  2007年   2篇
  2006年   1篇
  2005年   7篇
  2002年   2篇
  2000年   4篇
  1999年   3篇
排序方式: 共有44条查询结果,搜索用时 15 毫秒
1.
Hydrogen bonding in crystalline N,N'-dialkylthioureas was examined with the help of single-crystal X-ray diffraction, DFT calculations, and Cambridge Structural Database (CSD) analysis. A CSD survey indicated that unlike the related urea derivatives, which persistently self-assemble into one-dimensional hydrogen-bonded chains, the analogous thioureas can form two different hydrogen-bonding motifs in the solid state: chains, structurally similar with those found in ureas, and dimers, that further associate into hydrogen-bonded layers. The formation of one motif or another can be manipulated by the bulkiness of the organic substituents on the thiourea group, which provides a clear example of steric control over the hydrogen bonding arrangement in crystalline organic solids.  相似文献   
2.
3.
The past decade has seen the explosive emergence of "dihydrogen bonds", interactions between the electrons of M-H sigma-bonds, where M is less electronegative than H (M = Al, B, Ga, Ir, Mo, Mn, Os, Re, Ru, W) and traditional proton donors. But 70 years ago, such an interaction was proposed by Zachariasen and Mooney [J. Chem. Phys. 1934, 2, 34-37] on the basis of their single-crystal X-ray diffraction structure (heavy atoms positions only) of ammonium hypophosphite (NH(4)H(2)PO(2)). We redetermined this structure at high resolution with a focus on the hydrogen atoms, using a modern diffractometer equipped with a CCD detector. Molecular orbital calculations were performed to investigate the charge density and the bond polarity of the P-H bonds and to assess their potential for participation in dihydrogen bonds. Neither the theory nor the X-ray structure supports the original claim of H...H interactions in this salt.  相似文献   
4.
An effective approach to sulfate separation from aqueous solutions is based on the crystallization of extended [SO4(H2O)52−]n sulfate–water clusters with a bis(guanidinium) ligand. The ligand was generated in situ by hydrazone condensation in water, thereby bypassing the need for elaborate syntheses, tedious purifications, and organic solvents. Crystallization of sulfate–water clusters represents an alternative approach to the now established sulfate separation strategies that involve encapsulation of the “naked” anion.  相似文献   
5.
6.
7.
Topochemical assembly of a covalent material can be achieved with the complex LiBH4⋅TEA (TEA=triethanolamine; section of structure shown), a dihydrogen-bonded system which has very short H⋅⋅⋅H contacts and high solid-state reactivity due to acidity enhancement in the OH groups by Li+ ion complexation.  相似文献   
8.
An efficient synthesis of 2,2,3,3,11,11,12,12-octamethyl-1,4,7,10,13-pentaoxacyclohexadecane (1, OM16C5) is described, which affords over an order of magnitude improvement in yield over the previously reported method. The first X-ray crystal structure of 1, as a complex with NaSCN, is also reported.  相似文献   
9.
Custom built : A promising new approach towards more efficient self‐assembled cage receptors through computer‐aided design is demonstrated. The resulting M4L6 tetrahedral cage, internally functionalized with accurately positioned urea hydrogen‐bonding groups (see structure; yellow: predicted, blue: experimental, space‐filling: SO42?), proved to be a remarkably strong sulfate receptor in water.

  相似文献   

10.
A novel approach for the separation of anions from aqueous mixtures was demonstrated, which involves their selective crystallization with metal-organic frameworks (MOFs) containing urea functional groups. Self-assembly of Zn2+ with the N,N'-bis(m-pyridyl)urea (BPU) linker results in the formation of one-dimensional MOFs including various anions for charge balance, which interact to different extents with the zinc nodes and the urea hydrogen-bonding groups, depending on their coordinating abilities. Thus, Cl-, Br-, I-, and SO4(2-), in the presence of BPU and Zn2+, form MOFs from water, in which the anions coordinate the zinc and are hydrogen-bonded to the urea groups, whereas NO3- and ClO4- anions either do not form MOFs or form water-soluble discrete coordination complexes under the same conditions. X-ray diffraction, FTIR, and elemental analysis of the coordination polymers precipitated from aqueous mixtures containing equivalent amounts of these anions indicated total exclusion of the oxoanions and selective crystallization of the halides in the form of solid solutions with the general composition ZnCl(x)Br(y)I(z).BPU (x + y + z = 2), with an anti-Hofmeister selectivity. The concomitant inclusion of the halides in the same structural frameworks facilitates the rationalization of the observed selectivity on the basis of the diminishing interactions with the zinc and urea acidic centers in the MOFs when going from Cl- to I-, which correlates with decreasing anionic charge density in the same order. The overall crystal packing efficiency of the coordination frameworks, which ultimately determines their solubility, also plays an important role in the anion crystallization selectivity under thermodynamic equilibration.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号