首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  免费   2篇
化学   8篇
数学   1篇
物理学   11篇
  2021年   1篇
  2018年   3篇
  2017年   1篇
  2016年   2篇
  2014年   1篇
  2013年   1篇
  2012年   3篇
  2011年   2篇
  2009年   1篇
  2008年   3篇
  2007年   1篇
  1999年   1篇
排序方式: 共有20条查询结果,搜索用时 31 毫秒
1.
Several emerging renewable technologies are available to satisfy the current energy demand and to minimize the effect of environmental degradation caused by high consumption of fossil fuels. These technologies are not mature enough to solve this problem but require more time for improving the efficiency, and cost reduction to become the economical alternative of fossil fuels. In this paper Dye-sensitized solar cell (DSSC) has been discussed in detail owing to advancement in the technology. Since each component of DSSC is responsible for a specific function, therefore, comprehensive literature studies has been done on individual section to understand the technology in depth. All the advancement in sensitizer, semiconductors, electrolyte, electrodes, additives, sealing and anchoring groups are included in this review with performance parameter of DSSC. Focus of this article is to provide summary of all available literature since beginning to date.  相似文献   
2.
A theoretical model to interpret the conductivity of ions through polymer electrolytes is established in terms of the temperature and pressure‐dependent hole fraction computed from Simha‐Somcynsky hole theory. The model successfully linearizes the logarithm of PPG and PEG conductivity data with NaCF3SO3 in a 20:1 ratio for a broad range of temperature and pressure. The conductivity parameter and transmission coefficient with an additive hole fraction constant are discussed and compared for both species. The derivative of the logarithm of conductivity with respect to the hole fraction decreases inversely with the hole fraction and saturates at about 0.08 and 0.12 hole fractions for PPG and PEG, respectively. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 2249–2254, 2008  相似文献   
3.
A novel route for the synthesis of poly(ethylene glycol)‐b‐polystyrene copolymer, starting from commercially available poly(ethylene glycol) methyl ether and azido terminated polystyrene prepared by atom transfer radical polymerization and subsequent nucleophilic substitution, is applied with simplicity and high efficiency. The combination of photoinduced copper (I)‐catalyzed alkyne‐azide cycloaddition (CuAAC) and ketene chemistry reactions proceeds either simultaneously or sequentially in a one‐pot procedure under near‐visible light irradiation. In both cases, excellent block copolymer formations are achieved, with an average molecular weight of around 7000 g mo1−1 and a polydispersity index of 1.20.

  相似文献   

4.
ABSTRACT

Polymers based on ionic conducting materials have important interest because of their potential applications in polymer electrolytes and membranes for fuel cell application. PVdF-co-HFP poly(viniliden-co-hexafluoropropylene) was chosen as a polymer matrix because of its high ionic conductivity and better mechanical properties. Polymer matrix composites were prepared with various amounts of LiClO4 salt by a solution casting method. The sample-ionic conductivity measurements were recorded by AC impedance analyzer at different frequencies from 0.1?Hz to 20?MHz and at different temperatures from 273 to 373?K.

The changes of nanoscopic free volume and free volume fraction in these materials were investigated in terms of temperature from 273 to 373?K using Positron Annihilation Lifetime Spectroscopy (PALS) and Simha-Somcynsky (SS) Hole Theory. The free volume had a bump at about 3% in weight percentage of the salt and there is a slight increase after 10%. The effects of weight percentages of LiClO4 and temperature were investigated. The mechanism of the ac ionic conductivity was presented in terms of the free volume models, however thermo-occupancy function justifies the best accurate representation of the data.  相似文献   
5.
Poly(methyl methacrylate) (PMMA) and poly(ethylene glycol) methyl ether (mPEG)-based monotelechelics were quantitatively prepared by copper (I)-catalyzed azide/alkyne cycloaddition (CuAAC) click reactions using azido-terminated polymers and alkyne functional benzodioxinones. The monotelechelic containing dimethyl moities (2,2-dimethyl-5-(prop-2-yn-1-yloxy)-4H-benzo[d][1,3]dioxin-4-one) was heat-sensitive, whereas the monotelechelic containing diphenyl moieties (2,2-diphenyl-5-(prop-2-yn-1-yloxy)-4H-benzo[d][1,3]dioxin-4-one) was UV light sensitive. Based on the FT-IR, 1H-NMR, and GPC investigations, the CuAAC click reactions enable the quantitative syntheses of monotelechelics under mild conditions. Moreover, the photosensitive mPEG-based monotelechelic was further utilized for the block copolymer synthesis upon UV-light irradiation. The photoinduced acylation of mPEG monotelechelic consist of (2,2-diphenyl-5-(prop-2-yn-1-yloxy)-4H-benzo[d][1,3]dioxin-4-one) in the presence of hydroxy-terminated poly(epsilon caprolactone) enabled the successful block copolymer formation.  相似文献   
6.
A new metamaterial absorber structure is designed and characterized both numerically and experimentally for microwave energy harvesting applications. The proposed structure includes four wheel resonators with different dimensions, from which the overall response of the structure can then be obtained by summing all the overlapping frequency responses corresponding to each dimension. The essential operation frequency range of the wheels is selected in such a way that the energy used in wireless communications and found within the environment that we live is absorbed. The dimensions are obtained using parametric study and genetic algorithm to realize wideband absorption response. When the simulation and measurement results are taken into account, it is observed that the metamaterial absorber based harvester has potential to absorb and convert microwave energy with an absorption ratio lying within the range of 80 and 99% for the frequency band of 3–5.9 and 7.3–8 GHz. The conversion efficiency of the structure as a harvester is found to be greater than 0.8 in the interval of 2–5 GHz. Furthermore, the incident angle and polarization dependence of the wheel resonator based metamaterial absorber and harvester is also investigated and it is observed that the structure has both polarization and incident angle independent frequency response with good absorption characteristics in the entire working frequency band. Hence, the suggested design having good absorption, polarization and angle independent characteristics with wide bandwidth is a potential candidate for future energy harvester using wireless communication frequency band.  相似文献   
7.
8.
In this study, two Schiff base ligands (HL(1) and HL(2)) and their Cu(II), Co(II), Ni(II), Pd(II) and Ru(III) metal complexes were synthesized and characterized by the analytical and spectroscopic methods. Alkane oxidation activities of the metal complexes were studied on cyclohexane as substrate. The ligands and their metal complexes were evaluated for their antimicrobial activity against Corynebacterium xerosis, Bacillus brevis, Bacillus megaterium, Bacillus cereus, Mycobacterium smegmatis, Staphylococcus aureus, Micrococcus luteus and Enterococcus faecalis (as gram-positive bacteria) and Pseudomonas aeruginosa, Klebsiella pneumoniae, Escherichia coli, Yersinia enterocolitica, Klebsiella fragilis, Saccharomyces cerevisiae, and Candida albicans (as gram-negative bacteria). The antioxidant properties of the Schiff base ligands were evaluated in a series of in vitro tests: 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging and reducing power activity of superoxide anion radical generated non-enzymatic systems. Electrochemical and thermal properties of the compounds were investigated.  相似文献   
9.
The electric and magnetic resonances of anisotropic broadside-coupled triangular-split-ring resonators are studied for different incident wave excitations. It is shown that the higher order modes exist in both electric and magnetic resonances. It is observed that the incident electric field couples to the magnetic resonance of the designed structure under different excitations. Multiple resonance features due to the anisotropy of the structure are found in the case of different excitations and the nature of these resonances can be regulated as either an electric or a magnetic mode for different frequencies. In this way, a resonant effective permittivity or permeability can be obtained. Hence, controllable properties of the constitutive material parameters (i.e. electric or magnetic resonances, negative values, etc.) can be determined by changing the incident wave excitation.  相似文献   
10.
Relativistic effects are employed to describe the weakly bound nuclei of \({}^{17}\)F and \({}^{11}\)Be. In order to calculate the energy levels of the ground state and the excited states of these nuclei, we solved the Dirac equation with pseudospin symmetry in the shell model by using the basic concept of supersymmetric shape invariance method. The results obtained from this approach are compared with a non-relativistic approach and experiment. It was then seen that the relativistic approach matches more with the experimental results.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号