首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   0篇
化学   5篇
数学   2篇
物理学   5篇
  2006年   1篇
  2005年   3篇
  2003年   1篇
  1999年   1篇
  1998年   1篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1991年   1篇
排序方式: 共有12条查询结果,搜索用时 31 毫秒
1.
2.
3.
The functional Ito formula, in the form df() = f( + d ) –f(),is formulated and proved in the context of a Lie algebra L associatedwith a quantum (non-commutative) stochastic calculus. Here fis an element of the universal enveloping algebra U of L, andf() + d() – f() is given a meaning using the coproductstructure of U even though the individual terms of this expressionhave no meaning. The Ito formula is equivalent to a chaoticexpansion formula for f() which is found explicitly. 1991 MathematicsSubject Classification: primary 81S25; secondary 60H05; tertiary18B25.  相似文献   
4.
Molecular orientation, which depends on surface coverage, determines whether or not catalytic hydrogenation is chemoselective.  相似文献   
5.
6.
The selective oxidation of trans-methylstyrene, a phenyl-substituted propene that contains labile allylic hydrogen atoms, has been studied on Cu{111}. Mass spectrometry and synchrotron fast XPS were used to detect, respectively, desorbing gaseous products and the evolution of surface species as a function of temperature and time. Efficient partial oxidation occurs yielding principally the epoxide, and the behavior of the system is sensitive to the order in which reactants are adsorbed. The latter is understandable in terms of differences in the spatial distribution of oxygen adatoms; isolated adatoms lead to epoxidation, while islands of "oxidic" oxygen do not. NEXAFS data taken over a range of coverages and in the presence and absence of coadsorbed oxygen indicate that the adsorbed alkene lies essentially flat with the allylic hydrogen atoms close to the surface. The photoemission results and comparison with the corresponding behavior of styrene on Cu{111} strongly suggest that allylic hydrogen abstraction is indeed a critical factor that limits epoxidation selectivity. An overall mechanism consistent with the structural and reactive properties is proposed.  相似文献   
7.
8.
It has long been conjectured that the difficulty of heterogeneously epoxidizing higher alkenes such as propene is due to the presence in the molecule of "allylic" H atoms that are readily stripped off by the oxygenated surface of the metal catalyst resulting in combustion. Here, taking advantage of the intrinsically higher epoxidation selectivity of Cu over Ag under vacuum conditions, we have used three phenylpropene structural isomers to examine the correlation between adsorption geometry and oxidation chemistry. It is found that under comparable conditions alpha-methylstyrene, trans-methylstyrene, and allylbenzene behave very differently on the oxygenated Cu(111) surface: the first undergoes extensive epoxidation accompanied by relatively little decomposition of the alkene; the second leads to some epoxide formation and extensive alkene decomposition; and the third is almost inert with respect to both reaction pathways. This reactive behavior is understandable in terms of the corresponding molecular conformations determined by near-edge X-ray absorption fine structure spectroscopy and density functional theory calculations. The proximity to the surface of the C=C function and of the allylic H atoms is critically important in determining reaction selectivity. This demonstrates the importance of adsorption geometry and confirms that allylic H stripping is indeed a key process that limits epoxidation selectivity in such cases.  相似文献   
9.
Selectivity promotion in the Ag-catalysed heterogeneous epoxidation of ethene correlates with halogen electron affinity showing that it is an electronic phenomenon rather than a steric or geometrical effect.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号