首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35篇
  免费   0篇
化学   19篇
力学   1篇
物理学   15篇
  2014年   1篇
  2013年   2篇
  2011年   3篇
  2010年   1篇
  2009年   2篇
  2007年   3篇
  2006年   1篇
  2005年   6篇
  2003年   2篇
  2002年   4篇
  2001年   1篇
  2000年   2篇
  1998年   1篇
  1987年   1篇
  1986年   2篇
  1981年   1篇
  1976年   1篇
  1931年   1篇
排序方式: 共有35条查询结果,搜索用时 0 毫秒
1.
2.
The current-monitoring method was used to measure the electroosmotic flow (EOF) in borosilicate glass capillaries and zeonor plastic microfluidic devices. The surface of the zeonor devices must be oxidized to support EOF and this treatment shows signs of aging within 6 days. Oxidized zeonor devices showed the same response to changes in applied field, pH, and ionic concentration as the capillaries. The effects of several common dynamic surfactant coatings on the walls were also studied (0.1%, v/v solutions of POP-6, POP4, Pluronics L81, and NP-40). These generally significantly suppressed the EOF but required several days to stabilize.  相似文献   
3.
Intrinsic localized modes (ILMs) have been observed in micromechanical cantilever arrays, and their creation, locking, interaction, and relaxation dynamics in the presence of a driver have been studied. The micromechanical array is fabricated in a 300 nm thick silicon-nitride film on a silicon substrate, and consists of up to 248 cantilevers of two alternating lengths. To observe the ILMs in this experimental system a line-shaped laser beam is focused on the 1D cantilever array, and the reflected beam is captured with a fast charge coupled device camera. The array is driven near its highest frequency mode with a piezoelectric transducer. Numerical simulations of the nonlinear Klein-Gordon lattice have been carried out to assist with the detailed interpretation of the experimental results. These include pinning and locking of the ILMs when the driver is on, collisions between ILMs, low frequency excitation modes of the locked ILMs and their relaxation behavior after the driver is turned off.  相似文献   
4.
The behavior of DNA molecules is observed in a nanofluidic device near the interface of two regions that produce different configuration entropies. An electric field is applied to drive the molecules partway across the interface. Upon removal of the field, the molecules recoil to the higher-entropy region with a profile characteristic of a force localized to the interface and independent of length. This is consistent with a confinement-mediated entropic force, distinct from the well-known entropic elasticity common to all polymers. An estimate of the hydrodynamic drag is used to produce a lower bound for the force. The phenomenon can be exploited to separate long-strand polyelectrolytes according to length.  相似文献   
5.
Prion proteins that have transformed from their normal cellular counterparts (PrPc) into infectious form (PrPres) are responsible for causing progressive neurodegenerative diseases in numerous species, such as bovine spongiform encephalopathy (BSE) in cattle (also known as mad cow disease), scrapie in sheep, and Creutzfeldt-Jakob disease (CJD) in humans. Due to a possible link between BSE and CJD it is highly desirable to develop non-invasive and ante mortem tests for the detection of prion proteins in bovine samples. Such ante mortem tests of all cows prior to slaughter will help to prevent the introduction of PrPres into the human food supply. Furthermore, detection of PrPres in donated blood will also help to prevent the transmission of CJD among humans through blood transfusion. In this study, we have continued development of a micromechanical resonator array that is capable of detecting PrPc in bovine blood serum. The sensitivity of the resonators for the detection of PrPc is further enhanced by the use of secondary mass labels. A pair of antibodies is used in a sandwich immunoassay format to immobilize PrPc on the surface of resonators and attach nanoparticles as secondary mass labels to PrPc. Secondary mass labeling is optimized in terms of incubation time to maximize the frequency shifts that correspond to the presence of PrPc on the surface of resonators. Our results show that a minimum of 200 pg mL−1 of PrPc in blood serum can be detected using micromechanical resonator arrays.  相似文献   
6.
Mechanical dissipation poses a ubiquitous challenge to the performance of nanomechanical devices. Here we analyze the support-induced dissipation of high-stress nanomechanical resonators. We develop a model for this loss mechanism and test it on Si(3)N(4) membranes with circular and square geometries. The measured Q values of different harmonics present a nonmonotonic behavior which is successfully explained. For azimuthal harmonics of the circular geometry we predict that destructive interference of the radiated waves leads to an exponential suppression of the clamping loss in the harmonic index. Our model can also be applied to graphene drums under high tension.  相似文献   
7.
Lopez AG  Craighead HG 《Optics letters》1998,23(20):1627-1629
We have fabricated a novel device that acts as a quarter-wave plate at normal incidence and as a polarizing beam splitter at an angle of incidence of ~40 deg . The device is made from a multilayer (SiO(2) /Si(3)N(4)) surface-relief zeroth-order one-dimensional grating with a period of 0.3 mum . The device is designed for an operating wavelength of 632.8 nm. We designed the device by using rigorous coupled-wave analysis and fabricated it by direct-write electron-beam lithography and reactive ion etching. Measurements confirmed the performance of the device as a wave plate and as a polarizing beam splitter.  相似文献   
8.
Micro- and nanoelectromechanical systems, including cantilevers and other small scale structures, have been studied for sensor applications. Accurate sensing of gaseous or aqueous environments, chemical vapors, and biomolecules have been demonstrated using a variety of these devices that undergo static deflections or shifts in resonant frequency upon analyte binding. In particular, biological detection of viruses, antigens, DNA, and other proteins is of great interest. While the majority of currently used detection schemes are reliant on biomarkers, such as fluorescent labels, time, effort, and chemical activity could be saved by developing an ultrasensitive method of label-free mass detection. Micro- and nanoscale sensors have been effectively applied as label-free detectors. In the following, we review the technologies and recent developments in the field of micro- and nanoelectromechanical sensors with particular emphasis on their application as biological sensors and recent work towards integrating these sensors in microfluidic systems.  相似文献   
9.
We show the importance of finite particle size in microfluidic asymmetric continuous-flow diffusion arrays, specifically the critical nature of the particle size with respect to the barrier gaps. We show that particles much smaller than the barrier gap follow individual field lines through narrow gaps and are poorly fractionated. In contrast, particles comparable to the gap size lose memory of their incoming field line and can be fractionated with high resolution. We demonstrate this effect using a new technological approach to create very straight and narrow injection bands in such arrays, and completely resolve bands of DNA of lengths 48,500 and 16,7000 base pairs.  相似文献   
10.
We report on studies of Thermobifida fusca cellulases Cel5A, Cel6B and Cel9A binding to pretreated wood particles using Confocal Laser Scanning Microscopy (CLSM). Hydro-thermal pretreated wood particles were immobilized on borosilicate substrates before fluorescently-labeled cellulase solutions at various concentrations were added. Time-lapse CLSM revealed that cellulases Cel5A, Cel6B and Cel9A quickly bound to certain areas of wood particles, slowly diffused into and adsorbed to less accessible areas, but showed little affinity for other areas of the wood. Cellulase-to-substrate association constants were estimated using a transient enzyme binding kinetics model, and were found to be in agreement with published values. In order to accurately account for the fluorescence signal of labeled enzyme mixed with wood autofluorescence, we also developed a spectral deconvolution method to separate signals from multiple fluorochromes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号