首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   1篇
化学   10篇
物理学   1篇
  2020年   1篇
  2019年   2篇
  2016年   1篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2009年   2篇
  2007年   2篇
排序方式: 共有11条查询结果,搜索用时 15 毫秒
1.
A rapid screening method based on traveling‐wave ion‐mobility spectrometry (TWIMS) combined with tandem mass spectrometry provides insight into the topology of interlocked and knotted molecules, even when they exist in complex mixtures, such as interconverting dynamic combinatorial libraries. A TWIMS characterization of structure‐indicative fragments generated by collision‐induced dissociation (CID) together with a floppiness parameter defined based on parent‐ and fragment‐ion arrival times provide a straightforward topology identification. To demonstrate its broad applicability, this approach is applied here to six Hopf and two Solomon links, a trefoil knot, and a [3]catenate.  相似文献   
2.
Fabien Cougnon  Samantha Bazin 《Tetrahedron》2007,63(48):11959-11964
Diethylzinc-mediated radical addition to CN bonds was investigated in the presence of phenylorganotellurium compounds as radical precursors. As group transfer agents, secondary alkyl phenyl tellurides were shown to be about twice as reactive as the corresponding alkyl iodides towards ethyl radical. Their use was proven to be advantageous regarding both chemoselectivity and yield. The replacement of diethylzinc by dimethylzinc, offers no advantage in these reactions.  相似文献   
3.
4.
Give me a tip : In situ production of diazonium salts from nitro compounds allows the use of diazonium chemistry for microelectrochemical patterning of surfaces by scanning electrochemical microscopy. The nitro precursor is reduced at the tip to the amine, which is diazotized in the interelectrode space as it diffuses (see picture). The tip acts as a source of diazonium salts, allowing sample derivatization just beneath the tip.

  相似文献   

5.
A biosensor for direct label-free DNA detection based on a polythiophene matrix is investigated by electrochemical impedance spectroscopy (EIS). Impedimetric experiments are performed with and without redox probe in solution. The non-Faradaic impedance measurements reveal two relaxation processes located at 50 Hz and 5 kHz, respectively. The first relaxation process, located at low frequencies, allows to detect biorecognition events by measuring the phase angle decrease, in accordance with a hindrance of the polaronic conduction. The second relaxation process, located at 5 kHz and originating from DNA modification, seems to increase with the length of the target sequence. These results suggest that this loaded support provides a platform for impedimetric detection of hybridization at high frequencies, leading to less time-consuming detection procedure. For a better understanding, results obtained in non-Faradaic mode are compared with Faradaic approach.  相似文献   
6.
The discovery through dynamic combinatorial chemistry (DCC) of a new generation of donor-acceptor [2]catenanes highlights the power of DCC to access unprecedented structures. While conventional thinking has limited the scope of donor-acceptor catenanes to strictly alternating stacks of donor (D) and acceptor (A) aromatic units, DCC is demonstrated in this paper to give access to unusual DAAD, DADD, and ADAA stacks. Each of these catenanes has specific structural requirements, allowing control of their formation. On the basis of these results, and on the observation that the catenanes represent kinetic bottlenecks in the reaction pathway, we propose a mechanism that explains and predicts the structures formed. Furthermore, the spontaneous assembly of catenanes in aqueous dynamic systems gives a fundamental insight into the role played by hydrophobic effect and donor-acceptor interactions when building such complex architectures.  相似文献   
7.
A molecular Solomon link adopts different conformations in acetonitrile ( 1 ) and in water ( 2 ). Contrary to expectations, the main driving force of the transformation is not the change in medium polarity, but the cooperative binding of about four molecules of water, forming a tiny droplet in the central cavity of 2 . Mechanistic studies reveal that the four binding sites can simultaneously switch between an inactive state (unable to bind water) and an active state (able to bind water) during the transformation. Spatial and temporal coordination of switching events is commonly observed in biological systems but has been rarely achieved in artificial systems. Here, the concerted activation of the four switchable sites is controlled by the topology of the whole molecule.  相似文献   
8.
Complex molecular knots and links are still difficult to synthesize and the properties arising from their topology are mostly unknown. Here, we report on a comparative photophysical study carried out on a family of closely related quinolinium-based knots and links to determine the impact exerted by topology on the molecular backbone. Our results indicate that topology has a negligible influence on the behavior of loosely braided molecules, which mostly behave like their unbraided equivalents. On the other hand, tightly braided molecules display distinct features. Their higher packing density results in a pronounced ability to resist deformation, a significant reduction in the solvent-accessible surface area and favors close-range π–π interactions between the quinolinium units and neighboring aromatics. Finally, the sharp alteration in behavior between loosely and tightly braided molecules sheds light on the factors contributing to braiding tightness.  相似文献   
9.
A promising strategy for increasing the performance of supercapacitors is proposed. Until now, a popular strategy for increasing the specific capacity of the electrode consists of grafting redox molecules onto a high surface area carbon structure to add a faradaic contribution to the charge storage. Unfortunately, the grafting of molecules to the carbon surface leads to a dramatic decrease of the electrochemical performances of the composite material. Herein, we used the organic binder as an active material in the charge/discharge process. Redox molecules were attached onto its polymeric skeleton to obtain a redox binder with the dual functionalities of both the binder and the active material. In this way, the electrochemical performance was improved without detrimentally affecting the properties of the porous carbon. Results showed that the use of a redox binder is promising for enhancing both energy and power densities.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号