首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31篇
  免费   0篇
化学   23篇
晶体学   1篇
数学   2篇
物理学   5篇
  2022年   1篇
  2020年   4篇
  2019年   1篇
  2013年   1篇
  2011年   3篇
  2010年   3篇
  2009年   1篇
  2008年   3篇
  2007年   2篇
  2005年   2篇
  1999年   1篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
  1995年   3篇
  1991年   1篇
  1973年   1篇
排序方式: 共有31条查询结果,搜索用时 15 毫秒
1.
2.
3.
4.
An array of highly fluorinated polymerizable phosphonium salts (HFPPS) were synthesized from PH3 and utilized in UV‐curable formulations. Inclusion of these salts at very low loading (0.1–1 wt %) into hexanediol diacrylate (HDDA) resulted in hydrophobic surfaces. The water repellency was achieved with short C4F9 fluorocarbon appendages in the monomer as opposed to the bioaccumulative C8F17 appended polymers. The physical properties of these new monomers were also characterized. The molecular architecture of the monomers had a pronounced effect on both their physical properties along with the degree of hydrophobicity imparted in the polymer. Salts utilizing the bis(trifluoromethylsulfonyl)imide anion displayed excellent compatibility with HDDA, while the chloride salts were insoluble. Time‐of‐flight secondary ion mass spectrometry (TOF‐SIMS) confirmed the presence of the HFPPS at the surface of the polymer coating. For the first time this demonstrates how these salts may be used to functionalize the surface of a UV‐cured film with ionic species. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2782–2792  相似文献   
5.
6.
7.
Chemical modification of proteins is enormously useful for characterizing protein function in complex biological systems and for drug development. Selective labeling of native or endogenous proteins is challenging owing to the existence of distinct functional groups in proteins and in living systems. Chemistry for rapid and selective labeling of proteins remains in high demand. Here we have developed novel affinity labeling probes using benzotriazole (BTA) chemistry. We showed that affinity-based BTA probes selectively and covalently label a lysine residue in the vicinity of the ligand binding site of a target protein with a reaction half-time of 28 s. The reaction rate constant is comparable to the fastest biorthogonal chemistry. This approach was used to selectively label different cytosolic and membrane proteins in vitro and in live cells. BTA chemistry could be widely useful for labeling of native/endogenous proteins, target identification and development of covalent inhibitors.

Affinity-based benzotriazole (BTA) probes selectively and covalently label native proteins or endogenous proteins in cells with a fast reaction rate. It is enormously useful for characterizing protein function in biological systems and for drug development.  相似文献   
8.
9.
An automated nanospray system based on chip technology (the NanoMate) was successfully interfaced to a modified Particle Discriminator Interface on a triple quadrupole mass spectrometer. A number of the interface parameters were optimized to improve the sampling efficiency for ions from the chip-based system. Analytical performance was assessed using a number of biochemicals as well as via a methodology for a pharmaceutical that passed validation as required by Good Laboratory Practices. Infusion analyses in flow rates <1 microL/min provided advantages in terms of throughput and sample consumption when compared to other methodologies based on liquid chromatography.  相似文献   
10.
Pseudo-natural-product (NP) design combines natural product fragments to provide unprecedented NP-inspired compounds not accessible by biosynthesis, but endowed with biological relevance. Since the bioactivity of pseudo-NPs may be unprecedented or unexpected, they are best evaluated in target agnostic cell-based assays monitoring entire cellular programs or complex phenotypes. Here, the Cinchona alkaloid scaffold was merged with the indole ring system to synthesize indocinchona alkaloids by Pd-catalyzed annulation. Exploration of indocinchona alkaloid bioactivities in phenotypic assays revealed a novel class of azaindole-containing autophagy inhibitors, the azaquindoles. Subsequent characterization of the most potent compound, azaquindole-1, in the morphological cell painting assay, guided target identification efforts. In contrast to the parent Cinchona alkaloids, azaquindoles selectively inhibit starvation- and rapamycin-induced autophagy by targeting the lipid kinase VPS34.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号