首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   131篇
  免费   2篇
化学   105篇
晶体学   3篇
力学   1篇
数学   8篇
物理学   16篇
  2023年   1篇
  2022年   3篇
  2021年   6篇
  2020年   1篇
  2019年   3篇
  2018年   1篇
  2016年   2篇
  2015年   1篇
  2013年   5篇
  2012年   13篇
  2011年   15篇
  2010年   6篇
  2009年   4篇
  2008年   10篇
  2007年   7篇
  2006年   8篇
  2005年   4篇
  2004年   5篇
  2003年   4篇
  2002年   3篇
  2001年   2篇
  1999年   1篇
  1996年   1篇
  1995年   2篇
  1994年   2篇
  1993年   2篇
  1992年   1篇
  1991年   1篇
  1989年   3篇
  1988年   1篇
  1985年   1篇
  1982年   1篇
  1981年   1篇
  1978年   3篇
  1977年   1篇
  1975年   2篇
  1974年   2篇
  1973年   1篇
  1970年   1篇
  1967年   1篇
  1966年   1篇
排序方式: 共有133条查询结果,搜索用时 15 毫秒
1.
The need for improved interactive tutoring capabilities in educational software for chemistry problem solving is an important one clearly articulated by teachers and students. To deliver the next generation of individualized interactive capabilities users demand, it is necessary to go beyond the conventional computer-assisted instruction methodology. The focus of this paper is the assessment with first-semester general chemistry students of a recently developed artificial intelligence (AI) tutor for balancing chemical equations. This is the first such assessment of an AI-based learning tool in chemistry. Students in CHEM 121 in the Fall 2001 semester at Duquesne University (N = 273) participated in the study. Students were divided into a test group that used the AI tutor as part of their study activities and a control group that did not use the tutor. It was found that the tutor improved the performance of the test group students to a statistically significant degree, helping the weakest students the most. This study establishes the feasibility of an AI-based approach to creating advanced new tutoring software for chemistry problem solving. Access to a Web-based demonstration of the equation-balancing tutor may be obtained by emailing the corresponding author.  相似文献   
2.
3.
Gas chromatography/mass spectrometry (GC/MS), with an ion trap mass analyzer, was used to examine the very-long-chain cuticular acid and certain non-acid wax constituents on the leaf sheath surface of Sorghum bicolor before and during 36 hours of light exposure. The mass spectra of the trimethylsilylated acids and alcohols did not match any of those published in searchable mass spectral libraries. The observed differences can be related to the interaction between water and the trimethylsilylated acids and alcohols. Understanding the observed mass spectra of the very-long-chain plant waxes is critical for studies that employ GC/MS with the ion trap mass analyzer to elucidate cuticular wax compositions on plants.  相似文献   
4.
5.
An efficient synthesis of the potent and orally active 5-HT1A agonists, (R)-(+)- and (S)-(-)-1-formyl-6,7,8,9-tetrahydro-N,N-dipropyl-3H-benz[e]indol-8-amines 1a and 1b , is described. This synthesis was accomplished in twelve steps from commercially available 1,5,6,7-tetrahydro-4H-indol-4-one ( 5 ). The key step involved a regio-controlled Friedel-Crafts acylation of 1-(p-toluenesulfonyl)indol-4-acetyl chloride with ethylene to yield a versatile synthon, 3-(p-toluenesulfonyl)-6,7,8,9-tetrahydro-3H-benz[e]indol-8-one ( 10 ). Subsequent coupling of this ketone with chiral α-methylbenzylamine under reductive amination conditions yielded a mixture of diastereomers. These diastereomers were efficiently separated by either chromatography or fractional recrystallization of the derived hydrochloride salts. Debenzylation of the pure diastereomers was followed by alkylation and formylation to yield (R)-(+)- and (S)-(-)-enantiomers 1a and 1b with >99% purity.  相似文献   
6.
The aim of this contribution was the study of the influence of polymer matrix on the photo-induced orientation of azobenzene groups. Notably, an azo-prepolymer bearing hydroxyl groups was selectively confined in self-assembled phases of different block copolymers, randomly-epoxidized polystyrene-b-polybutadiene-b-polystyrene (SBSep) and polystyrene-b-poly-4-vinylpyridine (S4VP). The formation of hydrogen bonds between the azo-prepolymer and poly-4-vinylpyridine block, as well as the effect of the local environment surrounding the azo-prepolymer were investigated by Fourier transform infrared and ultraviolet–visible spectroscopies. In addition, the reversible optical storage properties of the developed materials were also studied. Birefringent properties of the systems based on S4VP were strongly enhanced by intermolecular interactions with the azo-prepolymer. Specifically, the maximum birefringence level attained by a system containing 13 wt% of azobenzene was around 2.3 × 10−2 and its remaining birefringence was nearly three times higher than that of the neat azo-prepolymer. Furthermore, a morphological analysis of the designed materials was carried out by atomic force microscopy. Taking into account that the control of the microdomains ordering in block copolymer films is of current interest, special attention was focused on the influence of different variables on the arrangement of the block copolymer microdomains.  相似文献   
7.
Applied Biochemistry and Biotechnology - Many industrial locations have identified the need for treatment of polychlorinated biphenyl (PCB) wastes and remediation of PCB-contaminated sites....  相似文献   
8.
The addition of PPh2H, PPhMeH, PPhH2, P(para-Tol)H2, PMesH2 and PH3 to the two-coordinate Ni0 N-heterocyclic carbene species [Ni(NHC)2] (NHC=IiPr2, IMe4, IEt2Me2) affords a series of mononuclear, terminal phosphido nickel complexes. Structural characterisation of nine of these compounds shows that they have unusual trans [H−Ni−PR2] or novel trans [R2P−Ni−PR2] geometries. The bis-phosphido complexes are more accessible when smaller NHCs (IMe4>IEt2Me2>IiPr2) and phosphines are employed. P−P activation of the diphosphines R2P−PR2 (R2=Ph2, PhMe) provides an alternative route to some of the [Ni(NHC)2(PR2)2] complexes. DFT calculations capture these trends with P−H bond activation proceeding from unconventional phosphine adducts in which the H substituent bridges the Ni−P bond. P−P bond activation from [Ni(NHC)2(Ph2P−PPh2)] adducts proceeds with computed barriers below 10 kcal mol−1. The ability of the [Ni(NHC)2] moiety to afford isolable terminal phosphido products reflects the stability of the Ni−NHC bond that prevents ligand dissociation and onward reaction.  相似文献   
9.
We study the glass transition in confined polymer films and present the first experimental evidence indicating that two separate mechanisms can act simultaneously on the film to propagate enhanced mobility from the free surface into the material. Using transmission ellipsometry, we have measured the thermal expansion of ultrathin, high molecular-weight (MW), freestanding polystyrene films over an extended temperature range. For two different MWs, we observed two distinct reduced glass transition temperatures (T(g)'s), separated by up to 60 K, within single films with thicknesses h less than 70 nm. The lower transition follows the expected MW dependent, linear T(g)(h) behavior previously seen in high MW freestanding films. We also observe a much stronger upper transition with no MW dependence that exhibits the same T(g)(h) dependence as supported and low MW freestanding polymer films.  相似文献   
10.
The structural evolution and rheology of dense nanoemulsion gels, which have been formed by creating strong attractions between slippery nanodroplets, are explored as a function of steady shear rate using rheological small-angle neutron scattering (rheo-SANS). For applied stresses above the yield stress of the gel, the network yields, fracturing into aggregates that break and reform as they tumble and interact in the shear flow. The average aggregate size decreases with increasing shear rate; meanwhile, droplet rearrangements within the clusters, allowed by the slippery nature of the attractive interaction, increase the local density within the aggregates. At the highest shear rates, all clusters disaggregate completely into individual droplets.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号