首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   0篇
化学   12篇
数学   3篇
物理学   2篇
  2021年   1篇
  2017年   2篇
  2016年   1篇
  2015年   3篇
  2012年   2篇
  2005年   1篇
  2004年   2篇
  2002年   2篇
  1999年   1篇
  1994年   1篇
  1993年   1篇
排序方式: 共有17条查询结果,搜索用时 203 毫秒
1.
The dependence of the limonene content of lemon (Citrus volkameriana) peel oil on the degree of ripeness of the fruit has been studied by using steam distillation and cold pressing to extract the oils from lemon fruit peel at different stages of maturation (green, greenish-yellow, and yellow-orange peel coloration). Samples of essential oils were analyzed by high resolution GC and GC-MS, using tetradecane as internal standard for quantitation. Forty components were detected; thirty eight were positively identified by comparison of their mass spectra (El, 70 eV) and Kováts retention indexes (determined using a non-logarithmic scale on capillary columns coated with both polar (DB-Wax) and non-polar (DB-1) stationary phases) with those of standards and with data reported in the literature. The limonene concentration reached a maximum level of 79.4% when the fruit was in the intermediate maturation stage characterized by greenish-yellow coloration.  相似文献   
2.
Triphenylamine ortho-tricarboxylic acid (1) has been synthesized and the crystal structure reported. This molecule is shown to spontaneously self-assemble into a hydrogen-bonded tetrahedron. Furthermore, Electrospray Ionization Mass Spectroscopy shows evidence for the stability of such aggregates from an ethanol/water solution.  相似文献   
3.
Using a modified quadrupole ion trap mass spectrometer, a series of metal complex ions have been reacted with acetonitrile in the gas phase. Careful control of the coordination number and the type of coordinating functionality in diethylenetriamine-substituted ligands enable the effects of the coordination sphere on metal complex reactivity to be examined. The association reaction kinetics of acetonitrile with these pentacoordinate complexes are followed in order to obtain information about the starting complexes and the reaction dynamics. The kinetics and thermodynamics of acetonitrile addition to the metal complex ions are strongly affected by the chemical environment around the metal center such that significant differences in reactivity are observed for Co(II) and Cu(II) complexes with various coordination spheres. When thiophene, furan, or benzene moieties are present in the coordination sphere of the complex, addition of two acetonitrile molecules is readily observed. In contrast, ligands with better sigma donors react mainly to add one acetonitrile molecule. Among the ligands with good sigma donors, a clear trend in reactivity is observed in which complexes with nitrogen-containing ligands are the least reactive, sulfur-containing complexes are more reactive, and oxygen-containing complexes are the most reactive. In general, equilibrium and reaction rate constants seem to be consistent with the hard and soft acid and base (HSAB) principle. Interestingly, the presence of certain groups (e.g., pyridine and imidazole) in the coordination sphere clearly can change the acid character of the metal as seen by their effect on the binding properties of other functional groups in the same ligand. Finally, we conclude that because complexes with different coordination spheres react to noticeably different extents, ion-molecule (I-M) reactions may be potentially useful for obtaining coordination structure information for transition metal complexes.  相似文献   
4.
5.
Steam distillation (SD), simultaneous distillation-solvent extraction (SDE), microwave-assisted solvent extraction (MWE), and supercritical (CO2) extraction (SFE) were used to isolate secondary metabolites from Lepechinia schiedeana. The various extracts were analyzed by capillary gas-chromatography, on poly (dimethylsiloxane) (DB-1) and poly(ethyleneglycol) (INNOWAX), 60 m columns, using FID or MSD (EI, 70 eV). Kováts indexes, mass spectra, or standard compounds were employed for compound identification. 43, 61, 67, and 79 compounds at concentrations above 0.01% were detected in the SD, SDE, MWE, and SFE extracts, respectively. Ledol, C15H26O, was the major constituent (20.04–36.87%) in all extracts. Oxygenated sesquiterpenes (24.36–43.14%), C10H16, monoterpenes (27.70–39.87%), and C15H24, sesquiterpenes (10.04–22.22%) were the main groups of compounds present in SD, SDE, MWE, and SFE extracts. Heavy hydrocarbons (Cn > 15), diterpenoids, and phytosterols were found only in MWE and SFE extracts. The antioxidant activity of Lepechinia schiedeana was measured by the HRGC quantification of the volatile carbonyl compounds, final products of lipoxidation, released in a model lipid system (sunflower oil) by the effect of the Fenton reagent. The concentration of volatile carbonyl compounds decreased by 65% when lipid oxidation was induced in the presence of macerated Lepechinia plant. The protection of polyunsaturated acids in sunflower oil was also studied by measuring their concentrations after heating of the oil (180°C, 2 h) with and without macerated Lepechinia plant.  相似文献   
6.
We go back and forth between, on the one hand, presentations of arithmetic and Kac-Moody groups and, on the other hand, presentations of profinite groups, deducing along the way new results on both.  相似文献   
7.
8.
Ni(II) complexes of a series of pentadentate polyamine ligands have been reacted with CH3CN in the gas phase using a modified quadrupole ion trap mass spectrometer. The ligands have structural features such that upon complexation, chelate ring size, sterics, and inductive effects can be evaluated in the gas phase. Rate and equilibrium constants for CH3CN addition to the metal complexes show that there is a general decrease in the gas-phase reactivity as the chelate ring size is increased. Density functional theory calculations at the B3LYP/LANL2DZ level of theory have been used to obtain minimum energy structures and Mulliken charges for the complexes. The decreased reactivity observed as the chelate ring size is increased correlates with a decrease in the atomic charge on the metal. A larger chelate ring size enhances ligand flexibility and improves the overlap of the ligand’s donor atoms with the metal center. Adding methyl groups adjacent to or on the nitrogen donor groups of a ligand also decreases the rate and equilibrium constants for the reactions of a given complex with CH3CN. Analysis of Mulliken charges for these complexes indicates that both inductive and steric effects are responsible for lower complex reactivity. These results suggest that while the gas-phase reactivity of a metal complex with CH3CN is very dependent on the functional groups directly bound to the metal, in some cases steric effects can conceal the correlation between reactivity and coordination structure.  相似文献   
9.
Five-coordinate metal complex ions of the type [ML](2+) [where M = Mn(II), Fe(II), Co(II), Ni(II), Cu(II), Zn(II) and L= 1,9-bis(2-pyridyl)-2,5,8-triazanonane (DIEN-(pyr)(2)) and 1,9-bis(2-imidazolyl)-2,5,8-triazanonane (DIEN-(imi)(2)] have been reacted with acetonitrile in the gas phase using a modified quadrupole ion trap mass spectrometer. The kinetics and thermodynamics of these reactions show that the reactivity of these complexes is affected by metal electronic structure and falls into three groups: Mn(II) and Ni(II) complexes are the most reactive, Fe(II) and Co(II) complexes exhibit intermediate reactivity, and Cu(II) and Zn(II) complexes are the least reactive. To help explain the experimental trends in reactivity, theoretical calculations have been used. Due to the relatively large size of the metal complexes involved, we have utilized a two-layered ONIOM method to perform geometry optimizations and single point energy calculations for the [ML](2+) and [ML + CH(3)CN](2+) systems. The calculations show that the reactant five-coordinate complexes ([ML](2+)) exhibit structures that are slightly distorted trigonal bipyramidal geometries, while the six-coordinate complexes ([ML + CH(3)CN](2+)) have geometries that are close to octahedral. The Delta G values obtained from the ONIOM calculations roughly agree with the experimental data, but the calculations fail to completely explain the trends for the different metal complexes. The failure to consider all possible isomers as well as adequately represent pi-d interactions for the metal complexes is the likely cause of this discrepancy. Using the angular overlap model (AOM) to obtain molecular orbital stabilization energies (MOSE) also fails to reproduce the experimental trends when only sigma interactions are considered but succeeds in explaining the trends when pi interactions are taken into account. These results indicate that the pi-donor character of the CH(3)CN plays a subtle, yet important, role in controlling the reactivity of these five-coordinate complexes. Also, the AOM calculations are consistent with the experimental data when the [ML](2+) complexes have high-spin trigonal bipyramidal configurations. Generally, these results suggest that ion-molecule reactions can be very sensitive to metal complex coordination geometry and thus may have some promise for providing gas-phase coordination structure.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号