首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20篇
  免费   0篇
化学   13篇
晶体学   1篇
力学   1篇
物理学   5篇
  2013年   1篇
  2011年   3篇
  2009年   1篇
  2008年   4篇
  2007年   4篇
  2006年   2篇
  2005年   2篇
  2004年   1篇
  2003年   1篇
  1993年   1篇
排序方式: 共有20条查询结果,搜索用时 15 毫秒
1.
The number of products being radiation processed worldwide is constantly increasing and today includes such diverse items as medical disposables, fruits and vegetables, spices, meats, seafoods and waste products. This range of products to be processed has resulted in a wide range of irradiator designs and capital and operating cost requirements.This paper discusses the economics of low dose food irradiation applications and the effects of various parameters on unit processing costs. It provides a model for calculating specific unit processing costs by correlating known capital costs with annual operating costs and annual throughputs. It is intended to provide the reader with a general knowledge of how unit processing costs are derived.  相似文献   
2.
3.
A systematic analysis of the S(1)-trans (A?(1)A(u)) state of acetylene, using IR-UV double resonance along with one-photon fluorescence excitation spectra, has allowed assignment of at least part of every single vibrational state or polyad up to a vibrational energy of 4200 cm(-1). Four observed vibrational levels remain unassigned, for which no place can be found in the level structure of the trans-well. The most prominent of these lies at 46?175 cm(-1). Its (13)C isotope shift, exceptionally long radiative lifetime, unexpected rotational selection rules, and lack of significant Zeeman effect, combined with the fact that no other singlet electronic states are expected at this energy, indicate that it is a vibrational level of the S(1)-cis isomer (A?(1)A(2)). Guided by ab initio calculations [J. H. Baraban, A. R. Beck, A. H. Steeves, J. F. Stanton, and R. W. Field, J. Chem. Phys. 134, 244311 (2011)] of the cis-well vibrational frequencies, the vibrational assignments of these four levels can be established from their vibrational symmetries together with the (13)C isotope shift of the 46?175 cm(-1) level (assigned here as cis-3(1)6(1)). The S(1)-cis zero-point level is deduced to lie near 44?900 cm(-1), and the ν(6) vibrational frequency of the S(1)-cis well is found to be roughly 565 cm(-1); these values are in remarkably good agreement with the results of recent ab initio calculations. The 46?175 cm(-1) vibrational level is found to have a 3.9 cm(-1) staggering of its K-rotational structure as a result of quantum mechanical tunneling through the isomerization barrier. Such tunneling does not give rise to ammonia-type inversion doubling, because the cis and trans isomers are not equivalent; instead the odd-K rotational levels of a given vibrational level are systematically shifted relative to the even-K rotational levels, leading to a staggering of the K-structure. These various observations represent the first definite assignment of an isomer of acetylene that was previously thought to be unobservable, as well as the first high resolution spectroscopic results describing cis-trans isomerization.  相似文献   
4.
Surface electron ejection by laser-excited metastables (SEELEM) and LIF spectra of acetylene were simultaneously recorded in the regions of the A1Au-X1Sigmag+ nominal 2(1)3(1)4(2) Ka=1<--00 and 2(1)3(1)6(2) Ka=1<--00 bands near 46,140 cm(-1). The upper states of these two bands are separated by only approximately 100 cm(-1), and the two S1 vibrational levels are known to be strongly mixed by anharmonic and Coriolis interactions. Strikingly different patterns were observed in the SEELEM spectra in the regions of the 2(1)3(1)4(2) and 2(1)3(1)6(2) vibrational levels. Because the equilibrium structure of the T3 electronic state is known to be nonplanar, excitation of nu4 (torsion) and nu6 (antisymmetric in-plane bend) are expected respectively to promote and suppress vibrational overlap between low-lying S1 and T3 vibrational levels. The nearly 50:50 mixed 2(1)3(1)4(2)-2(1)3(1)6(2) character of the S1 vibrational levels rules out this simple Franck-Condon explanation for the different appearance of the SEELEM spectra. A simple model is applied to the SEELEM/LIF spectra to explain the differences between spectral patterns in terms of a T3 doorway-mediated singlet-triplet coupling model.  相似文献   
5.
The A1A" state of isocyanogen, CNCN, is observed using photofragment fluorescence excitation spectroscopy in a room temperature cell and in a molecular beam. The spectra are highly congested, but progressions that correspond to the Franck-Condon active C-N-C bending vibration in the excited state are evident. Linewidth measurements indicate that the excited state lifetime is <10 ps. These measurements are consistent with previous ab initio calculations, which predicted a bent excited state with a short lifetime due to predissociation. Although we do not believe that we have observed the origin band of the electronic transition, we place an upper limit of 42,523 cm(-1) on the energy of the excited state zero point level.  相似文献   
6.
Rotational analyses are reported for a number of newly-discovered vibrational levels of the S1-trans1Au) state of C2H2. These levels are combinations where the Franck-Condon active and vibrational modes are excited together with the low-lying bending vibrations, and . The structures of the bands are complicated by strong a- and b-axis Coriolis coupling, as well as Darling-Dennison resonance for those bands that involve overtones of the bending vibrations. The most interesting result is the strong anharmonicity in the combinations of (trans bend, ag) and (in-plane cis bend, bu). This anharmonicity presumably represents the approach of the molecule to the trans-cis isomerization barrier, where ab initio results have predicted the transition state to be half-linear, corresponding to simultaneous excitation of and . The anharmonicity also causes difficulty in the least squares fitting of some of the polyads, because the simple model of Coriolis coupling and Darling-Dennison resonance starts to break down. The effective Darling-Dennison parameter, K4466, is found to increase rapidly with excitation of , while many small centrifugal distortion terms have had to be included in the least squares fits in order to reproduce the rotational structure correctly. Fermi resonances become important where the K-structures of different polyads overlap, as happens with the 2131B1 and 31B3 polyads (B = 4 or 6). The aim of this work is to establish the detailed vibrational level structure of the S1-trans state in order to search for possible S1-cis (1A2) levels. This work, along with results from other workers, identifies at least one K sub-level of every single vibrational level expected up to a vibrational energy of 3500 cm−1.  相似文献   
7.
We have recorded the vibrational absorption spectrum of 1,1,1,2-tetrafluoroethane (HFC-134a) in the fundamental and first five CH-stretching overtone regions with the use of Fourier transform infrared, dispersive long-path, intracavity laser photoacoustic, and cavity ringdown spectroscopies. We compare our measured total oscillator strengths in each region with intensities calculated using an anharmonic oscillator local mode model. We calculate intensities with 1D, 2D, and 3D Hamiltonians, including one or two CH stretches and two CH stretches with the HCH bending mode, respectively. The dipole moment function is calculated ab initio with self-consistent-field Hartree-Fock and density functional theories combined with double- and triple-zeta-quality basis sets. We find that the basis set choice affects the total intensity more than the choice of the Hamiltonian. We achieve agreement between the calculated and measured total intensities of approximately a factor of 2 or better for the fundamental and first five overtones.  相似文献   
8.
A family of robust stretch-dominated bimaterial lattices is introduced which combines low (or zero) thermal expansion with high stiffness, structural robustness over wide temperature ranges and manufacturing facility. This combination of properties is unavailable through any other material solution. The concept uses two constituents configured as adjoining sub-lattices. It accommodates the thermal expansion through rotation of the members of one sub-lattice. Moreover, the lattice exhibits large stiffness to weight because it is fully triangulated and does not rely on rotational resistance at the joints for structural rigidity. A wide range of constituents can be used to build the new lattices enabling many desirable properties to be incorporated, especially high strength and toughness. Examples of both planar and volumetric lattices are presented, and their thermo-mechanical properties derived. The results are verified by conducting experiments and finite element simulations on a lattice fabricated using aluminium and titanium alloy constituents.  相似文献   
9.
The shaping of nuclear spin polarization profiles and the induction of nuclear resonances are demonstrated within a parabolic quantum well using an externally applied gate voltage. Voltage control of the electron and hole wave functions results in nanometer-scale sheets of polarized nuclei positioned along the growth direction of the well. Applying rf voltages across the gates induces resonant spin transitions of selected isotopes. This depolarizing effect depends strongly on the separation of electrons and holes, suggesting that a highly localized mechanism accounts for the observed behavior.  相似文献   
10.
John J. Chu  Craig A. Steeves 《Journal of Non》2011,357(22-23):3765-3773
In this study, the thermal expansion and recrystallization behavior of amorphous Al and Ti are investigated using molecular dynamics simulations. Amorphous phases are obtained via rapid quenching from a liquid state and are subsequently heated at a rate of 1 K/ps. Using the change in simulation size over the course of heating, the thermal expansion coefficients of amorphous Al and Ti are calculated and compared to their crystalline counterparts. From a similar set of simulations, the recrystallization temperatures of Al and Ti are determined by analyzing their potential energy profiles. In addition, the change in volume as a result of the phase transition is quantified by comparing the atomic volumes of Al and Ti in both their amorphous and crystalline states.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号