首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30篇
  免费   0篇
化学   16篇
数学   2篇
物理学   12篇
  2020年   2篇
  2016年   2篇
  2013年   5篇
  2010年   1篇
  2008年   1篇
  2006年   1篇
  2002年   1篇
  2000年   2篇
  1997年   1篇
  1995年   1篇
  1994年   1篇
  1992年   1篇
  1991年   2篇
  1990年   1篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1984年   1篇
  1983年   2篇
  1978年   1篇
  1974年   1篇
排序方式: 共有30条查询结果,搜索用时 62 毫秒
1.
2.
We present results of the first vibrational photon-echo, transient-grating, and temperature dependent transient-bleaching experiments on a-Si:H. Using these techniques, and the infrared light of a free electron laser, the vibrational population decay and phase relaxation of the Si-H stretching mode were investigated. Careful analysis of the data indicates that the vibrational energy relaxes directly into Si-H bending modes and Si phonons, with a distribution of rates determined by the amorphous host. Conversely, the pure dephasing appears to be single exponential, and can be modeled by dephasing via two-phonon interactions.  相似文献   
3.
4.
Previously proposed, semi-classical quantization conditions are further examined and then used to calculate low-lying vibrational energy levels of SO2 and H2O. Results are compared with variational quantum-mechanical results, using various realistic analytic potentials.  相似文献   
5.

Background  

Previous studies indicate that light information reaches the suprachiasmatic nucleus (SCN) through a subpopulation of retinal ganglion cells that contain both glutamate and pituitary adenylyl cyclase activating peptide (PACAP). While the role of glutamate in this pathway has been well studied, the involvement of PACAP and its receptors are only beginning to be understood. Speculating that PACAP may function to modulate how neurons in the suprachiasmatic nucleus respond to glutamate, we used electrophysiological and calcium imaging tools to examine possible cellular interactions between these co-transmitters.  相似文献   
6.
A semiclassical method of calculating polyatomic molecular potential energy surfaces from observed vibration-rotation data is presented. It is based on EBK quantization of invariant tori and on a classical analogue of the Hellman-Feynman theorem. Applications to model potentials and the diatomics CO and I2 compared well with other calculations.  相似文献   
7.
We construct a jump-diffusion model with seasonality, mean-reversion, time-dependent jump intensity and heteroskedastic disturbance for electricity spot prices, while keeping the analytical tractability of futures prices. We find that the jump component plays a considerably larger role than the diffusion component in the variance of spot prices. Moreover, the jump intensity is much higher during summer and winter. We also explore the seasonal market price of risk (MPR) with different maturities, from one month to five months. Our results show that the diffusion risk and the jump risk are priced quite differently.  相似文献   
8.
9.
The profluorescent nitroxide, 1,1,3,3-tetramethyldibenzo[e,g]isoindolin-2-yloxyl (TMDBIO) was investigated as a probe for the radical-mediated degradation of stabilised polypropylene. TMDBIO has been previously shown to be a sensitive probe for free-radical degradation during the thermo-oxidation of unstabilised polypropylene. Here we report on the effect that adding hindered phenol or phosphite stabilisers to polypropylene has on the free-radical sensing ability of TMDBIO during thermo-oxidation. In addition, novel dual-functional, hindered phenol containing profluorescent nitroxides, 5-[2-(4-hydroxy-3,5-di-tert-butylphenyl)ethenyl]-1,1,3,3-tetramethylisoindolin-2-yloxyl (HSTMIO) and its derivatives were investigated as probes for the radical-mediated degradation of polypropylene. These dual-functional probes were shown to be efficient stabilisers for polypropylene during thermo-oxidation at 150 °C in oxygen and sensors of thermo-oxidation during its early stages, in the so-called “induction period”.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号