首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   1篇
化学   9篇
力学   1篇
数学   1篇
物理学   6篇
  2020年   1篇
  2016年   1篇
  2010年   1篇
  2008年   1篇
  2006年   1篇
  2005年   1篇
  2002年   5篇
  1999年   2篇
  1997年   1篇
  1993年   1篇
  1980年   1篇
  1974年   1篇
排序方式: 共有17条查询结果,搜索用时 31 毫秒
1.
A nano-electrospray ionisation source has been designed and constructed for a high temperature ion mobility spectrometer. The drift cell was modified by replacement of the 63Ni atmospheric pressure chemical ionisation source with a tube lens/desolvation region and operated using commercial nano-electrospray capillaries. Ions were introduced into the drift region via a Bradbury-Nielson gate (pulse width 50 micros, repetition period 20 ms). A unidirectional flow of nitrogen was used as the drift gas at temperatures in the range 100-150 degrees C to aid desolvation. The performance of the nano-electrospray ion source has been demonstrated for analytes including crown ethers, amino acids and peptides. Reduced mobilities determined by nano-ESI were consistent with those reported using a 63Ni ion source.  相似文献   
2.
Collagens are highly abundant mammalian proteins that contain a high content of hydroxylated amino acids such as hydroxyproline. We have exploited the high hydroxyproline content of collagen and developed a method for hydroxyproline quantification as a measure of collagen content in muscle samples. The novel method utilizes a highly selective and sensitive method of multiple reaction monitoring (MRM) by mass spectrometry. The analytical method is simple, rapid (5min), convenient (no derivatization), precise (<17% RSD), accurate (90-108%), sensitive (4.88nmol/L) and linear (R(2)>0.999) over three orders of magnitude (5-5000nmol/L).  相似文献   
3.
Fast atom bombardment, combined with high-energy collision-induced tandem mass spectrometry, has been used to investigate gas-phase metal-ion interactions with captopril, enalaprilat and lisinopril, all angiotensin-converting enzyme inhibitors.Suggestions for the location of metal-binding sites are presented. For captopril, metal binding occurs most likely at both the sulphur and the nitrogen atom. For enalaprilat and lisinopril, binding preferably occurs at the amine nitrogen. Copyright 1999 John Wiley & Sons, Ltd.  相似文献   
4.
5.
Electrospray mass spectrometry/mass spectrometry was used to investigate the gas‐phase properties of protonated expanded porphyrins, in order to correlate those with their structure and conformation. We have selected five expanded meso‐pentafluorophenyl porphyrins, respectively, a pair of oxidized/reduced fused pentaphyrins (22 and 24 π electrons), a pair of oxidized/reduced regular hexaphyrins (26 and 28 π electrons) and a regular doubly N‐fused hexaphyrin (28 π electrons). The gas‐phase behavior of the protonated species of oxidized and reduced expanded porphyrins is different. The oxidized species (aromatic Hückel systems) fragment more extensively, mainly by the loss of two HF molecules. The reduced species (Möbius aromatic or Möbius‐like aromatic systems) fragment less than their oxidized counterparts because of their increased flexibility. The protonated regular doubly fused hexaphyrin (non‐aromatic Hückel system) shows the least fragmentation even at higher collision energies. In general, cyclization through losses of HF molecules decreases from the aromatic Hückel systems to Möbius aromatic or Möbius‐like aromatic systems to non‐aromatic Hückel systems and is related to an increase in conformational distortion. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
6.
7.
We demonstrate the use of electrospray ionisation mass spectrometry (ESI-MS) in high salt solutions for the analysis of weak non-covalent complexes of the anthracycline antibiotic nogalamycin with novel DNA hairpin structures; high signal-to-noise ratios for the complexes in the absence of bound Na+ ions permits relative binding affinities to be estimated.  相似文献   
8.
9.
Using a novel differential magneto-optical imaging technique we investigate the phenomenon of vortex lattice melting in crystals of Bi2Sr2CaCu2O8 (BSCCO). The images of melting reveal complex patterns in the formation and evolution of the vortex solid-liquid interface with varying field (H)/temperature (T). We believe that the complex melting patterns are due to a random distribution of material disorder/inhomogeneities across the sample, which create fluctuations in the local melting temperature or field value. To study the fluctuations in the local melting temperature/field, we have constructed maps of the melting landscape T m(H, r), viz., the melting temperature (T m) at a given location (r) in the sample at a given field (H). A study of these melting landscapes reveals an unexpected feature: the melting landscape is not fixed, but changes rather dramatically with varying field and temperature along the melting line. It is concluded that the changes in both the scale and shape of the landscape result from the competing contributions of different types of quenched disorder which have opposite effects on the local melting transition.  相似文献   
10.
This is a continuation of our earlier investigation (Gurtuet al 1974Phys. Lett. 50 B 391) on multiparticle production in proton-nucleus collisions based on an exposure of emulsion stack to 200 GeV/c beam at the NAL. It is found that the ratioR em = 〈n s〉/〈n ch〉, where 〈n ch〉 is the charged particle multiplicity in pp-collisions, increases slowly from about 1 at 10 GeV/c to 1·6 at 68 GeV/c and attains a constant value of 1·71 ± 0·04 in the region 200 to 8000 GeV/c. Furthermore,R em = 1·71 implies an effectiveA-dependence ofR A =A 0.18,i.e., a very weak dependence. Predictions ofR em on various models are discussed and compared with the emulsion data. Data seem to favour models of hadron-nucleon collisions in which production of particles takes place through adouble step mechanism,e.g., diffractive excitation, hydrodynamical and energy flux cascade as opposed to models which envisage instantaneous production.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号