首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   101篇
  免费   14篇
化学   98篇
力学   2篇
数学   4篇
物理学   11篇
  2022年   5篇
  2021年   7篇
  2020年   5篇
  2019年   2篇
  2018年   2篇
  2017年   2篇
  2016年   9篇
  2015年   6篇
  2014年   8篇
  2013年   1篇
  2012年   13篇
  2011年   14篇
  2010年   5篇
  2009年   4篇
  2008年   7篇
  2007年   7篇
  2006年   6篇
  2005年   5篇
  2004年   2篇
  2003年   2篇
  2002年   3篇
排序方式: 共有115条查询结果,搜索用时 31 毫秒
1.
Previously unknown N-aminosaccharin was prepared in good yield via the one-step direct amination of saccharin sodium salt with hydroxylamine-O-mesitylenesulfonic acid (MSH) and its reactivity investigated. N-aminosaccharin and its derivatives were tested against hCA isoforms and the parent compound was identified to be a selective, low micromolar inhibitor (Ki = 8.8 μM) of hCA I. These findings provide a ligand-efficient starting point for the design of potent hCA I inhibitors – a promising drug target for retinal/cerebral edema treatment.  相似文献   
2.
Structure‐based drug development is often hampered by the lack of in vivo activity of promising compounds screened in vitro, due to low membrane permeability or poor intracellular binding selectivity. Herein, we show that ligand screening can be performed in living human cells by “intracellular protein‐observed” NMR spectroscopy, without requiring enzymatic activity measurements or other cellular assays. Quantitative binding information is obtained by fast, inexpensive 1H NMR experiments, providing intracellular dose‐ and time‐dependent ligand binding curves, from which kinetic and thermodynamic parameters linked to cell permeability and binding affinity and selectivity are obtained. The approach was applied to carbonic anhydrase and, in principle, can be extended to any NMR‐observable intracellular target. The results obtained are directly related to the potency of candidate drugs, that is, the required dose. The application of this approach at an early stage of the drug design pipeline could greatly increase the low success rate of modern drug development.  相似文献   
3.
It is generally assumed that astatide (At?) is the predominant astatine species in basic aqueous media. This assumption is questioned in non‐complexing and non‐reductive aqueous solutions by means of high‐pressure anion‐exchange chromatography. Contrary to what is usually believed, astatide is found to be a minor species at pH=11. A different species, which also bears a single negative charge, becomes predominant when the pH is increased beyond 7. Using competition experiments, an equilibrium constant value of 10?6.9 has been determined for the formation of this species from AtO(OH) with the exchange of one proton. The identification of this species, AtO(OH)2?, is achieved through relativistic quantum mechanical calculations, which rule out the significant formation of the AtO2? species, while leading to a hydrolysis constant of AtO(OH) in excellent agreement with experiment when the AtO(OH)2? species is considered. Beyond the completion of the Pourbaix diagram of astatine, this new information is of interest for the development of 211At radiolabeling protocols.  相似文献   
4.
Strontium and calcium (alkaline earth: Ae) olefin complexes stabilised by secondary Ae???F?C and β‐agostic Ae???H?Si interactions are presented. Olefin coordination onto the alkaline earths is plain in the solid state, and it is thermodynamically favoured over the coordination of THF. The existence of the Ae???olefin interactions is corroborated by solution NMR data and DFT computations. The coordination mode of the olefin varies with steric effects and, if enforced, olefin dissociation can be compensated by the other non‐covalent interactions, as supported by DFT computations.  相似文献   
5.
A new heteronuclear decoupling mechanism under fast magic-angle spinning MAS is introduced. It is based on refocusing the coherences responsible for the dephase of low-gamma nuclei ((13)C, (15)N) transverse spin-polarization in the presence of strongly dipolar-coupled protons, and has the advantage that can be implemented by pulsed techniques, with all the benefits resulting from a reduced duty cycle compared with conventional decoupling by continuous rf irradiation. The decoupling efficiency of a simple rotor-synchronized Hahn-echo pulse train is analyzed both theoretically and experimentally. It was found that a substantial improvement in sensitivity and resolution can be achieved in compounds with small (1)H chemical shielding parameters even at moderate sample spinning, and some interesting applications are shown. It is also shown that much faster spinning frequencies, or alternative refocusing sequences, are needed for applications on rigid organic solids, i.e., in systems with larger (1)H chemical shifts.  相似文献   
6.
Grasping the historical volatility of stock market indices and accurately estimating are two of the major focuses of those involved in the financial securities industry and derivative instruments pricing. This paper presents the results of employing the intrinsic entropy model as a substitute for estimating the volatility of stock market indices. Diverging from the widely used volatility models that take into account only the elements related to the traded prices, namely the open, high, low, and close prices of a trading day (OHLC), the intrinsic entropy model takes into account the traded volumes during the considered time frame as well. We adjust the intraday intrinsic entropy model that we introduced earlier for exchange-traded securities in order to connect daily OHLC prices with the ratio of the corresponding daily volume to the overall volume traded in the considered period. The intrinsic entropy model conceptualizes this ratio as entropic probability or market credence assigned to the corresponding price level. The intrinsic entropy is computed using historical daily data for traded market indices (S&P 500, Dow 30, NYSE Composite, NASDAQ Composite, Nikkei 225, and Hang Seng Index). We compare the results produced by the intrinsic entropy model with the volatility estimates obtained for the same data sets using widely employed industry volatility estimators. The intrinsic entropy model proves to consistently deliver reliable estimates for various time frames while showing peculiarly high values for the coefficient of variation, with the estimates falling in a significantly lower interval range compared with those provided by the other advanced volatility estimators.  相似文献   
7.
Surfactant-induced wetting of hydrophobic nanopores is investigated. SDS micelles interact with the C18 layer on the nanopore walls with their hydrophobic tails, creating a charged wall lining with their head groups and inducing a breakthrough of the aqueous solution to wet the pores. The surface coverage of the surfactant molecules is evaluated electrophoretically. A surprising discovery is that pore wetting is achieved with 0.73 μmol/m(2) coverage of SDS surfactant, corresponding to only 18% of a monolayer on the walls of the nanopores. Clearly, the surfactant molecules cannot organize as a compact uninterrupted monolayer. Instead, formation of hemimicelles is thermodynamically favored. Modeling shows that, to be consistent with the experimental observations, the aggregation number of hemimicelles is lower than 25 and the size of hemimicelle is limited to a maximum radius of 11.7 ?. The hydrophobic tails of SDS thus penetrate into and intercalate with the C18 layer. The insight gained in the C18-surfactant interactions is essential in the surfactant-induced solubilization of hydrophobic nanoporous particles. The results have bearing on the understanding of the nature of hydrophobic interactions.  相似文献   
8.

Background

The β-carbonic anhydrase (CA, EC 4.2.1.1) enzymes have been reported in a variety of organisms, but their existence in animals has been unclear. The purpose of the present study was to perform extensive sequence analysis to show that the β-CAs are present in invertebrates and to clone and characterize a member of this enzyme family from a representative model organism of the animal kingdom, e.g., Drosophila melanogaster.

Results

The novel β-CA gene, here named DmBCA, was identified from FlyBase, and its orthologs were searched and reconstructed from sequence databases, confirming the presence of β-CA sequences in 55 metazoan species. The corresponding recombinant enzyme was produced in Sf9 insect cells, purified, kinetically characterized, and its inhibition was investigated with a series of simple, inorganic anions. Holoenzyme molecular mass was defined by dynamic light scattering analysis and gel filtration, and the results suggested that the holoenzyme is a dimer. Double immunostaining confirmed predictions based on sequence analysis and localized DmBCA protein to mitochondria. The enzyme showed high CO2 hydratase activity, with a kcat of 9.5 × 105 s-1 and a kcat/KM of 1.1 × 108 M- 1s- 1. DmBCA was appreciably inhibited by the clinically-used sulfonamide acetazolamide, with an inhibition constant of 49 nM. It was moderately inhibited by halides, pseudohalides, hydrogen sulfide, bisulfite and sulfate (KI values of 0.67 - 1.36 mM) and more potently by sulfamide (KI of 0.15 mM). Bicarbonate, nitrate, nitrite and phenylarsonic/boronic acids were much weaker inhibitors (KIs of 26.9 - 43.7 mM).

Conclusions

The Drosophila β-CA represents a highly active mitochondrial enzyme that is a potential model enzyme for anti-parasitic drug development.  相似文献   
9.
The electrochemical stability of TiO2 nanoarchitecture fabricated in fluoride electrolyte presented in this paper is related to 2D and 3D geometries that present a shift from nanopores toward nanotubes. The fabrication conditions involve a 60 V applied voltage for 2 hours of anodizing in order to create the ordered structures, in a mixture of low‐water glycerol electrolyte and fluoride. With the use of different ultrasonication times, a variety of nanotubes/nanopores were observed. The surface interfacial aspects were investigated mainly by surface microscopy and hydrophilic/hydrophobic balance for the grown structures ultrasonicated at various periods of time. The electrochemical behavior of the nanotube‐structured surface was performed by potentiodynamic evaluation and electrochemical impedance spectroscopy in a simulated body fluid solution. As a most important result, all surface analysis and electrochemical data interpretation permitted the proposition of a model for elaboration of different nanostructures from nanopores to nanotubes. These different surface nanoarchitectures were obtained as a result of ultrasonication at various periods of time. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号