首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   55篇
  免费   0篇
化学   50篇
晶体学   3篇
物理学   2篇
  2013年   2篇
  2009年   3篇
  2008年   4篇
  2007年   5篇
  2006年   5篇
  2005年   4篇
  2004年   7篇
  2003年   3篇
  2002年   8篇
  2001年   2篇
  2000年   1篇
  1995年   1篇
  1994年   2篇
  1992年   2篇
  1991年   3篇
  1990年   1篇
  1984年   1篇
  1983年   1篇
排序方式: 共有55条查询结果,搜索用时 31 毫秒
1.
The crystal structure of [N(CH3)4]3[As2Cl9] is determined at 293 K. It crystallizes in trigonal space group P31c: a = 9.2199(8), c = 21.065(3)Å, Z = 2, R1 = 0.0505, wR2 = 0.1283. The crystal is built of the discrete bioctahedral [As2Cl9]3— anions and the deformed tetramethylammonium cations. A structural phase transition in [N(CH3)4]3[As2Cl9] is detected by the DSC and dilatometric techniques at 146/151 K (on cooling/heating). Dielectric relaxation studies in the frequency range 75 kHz — 5 MHz indicate reorientations of the tetramethylammonium cations within the high temperature phase. Optical observations show the existence of the ferroelastic domain structure below 146 K. The possible mechanism of phase transition is discussed on the basis of the presented results.  相似文献   
2.
3.
By alternating‐current electrochemical technique crystals of copper(I) π‐complex with 1‐allylpyridinium chloride of [C5H5N(C3H5)][Cu2Cl3] ( 1 ) composition have been obtained and structurally investigated. Compound 1 crystallizes in monoclinic system, space group C2/c a = 24.035(1) Å, b = 11.4870(9) Å, c = 7.8170(5) Å, β = 95.010(5)°, V = 2150.0(2) Å3 (at 100 K), Z = 8, R = 0.028, for 4836 independent reflections. In the structure 1 trigonal‐pyramidal environment of π‐coordinated copper(I) atom is formed by a lengthened to 1.376(2) Å C=C bond of allyl group and by three chlorine atoms. Other two copper atoms are tetrahedrally surrounded by chlorine atoms only. The coordination polyhedra are combined into an original infinite (Cu4Cl62—)n fragment. Structural comparison of 1 and the recently studied copper(I) chloride π‐complexes with 3‐amino‐, 2‐amino‐, 4‐amino‐1‐allylpyridinium chlorides of respective [LCu2Cl3] ( 2 ), [L2Cu2Cl4] ( 3 ), and [LCuCl2] ( 4 ) compositions allowed us to reveal the trend of the inorganic fragment complication which depends on pKa (base) value of the corresponding initial heterocycle.  相似文献   
4.
The crystals of N-allylisoquinolinium chlorides of the compositions [C9H7N(C3H5)]2CuIICl4 (I), [C9H7N(C3H5)]CuICl2 · H2O (II), and [C9H7N(C3H5)]CuICl1.43Br0.57 · H2O (III) were prepared by alternating-current electrosynthesis. X-ray diffraction analysis (using diffractometer models DARCH1 for I, STOE for II, and KUMA/CCD for III, MoK radiation) showed that the crystals of I are monoclinic, space group P21/n, a = 14.91(1) Å, b = 10.41(1) Å, c = 16.90(1) Å, = 109.73(8)°, V = 2470(8) Å3, Z = 4. The crystals of isostructural compounds II and III are triclinic, space group P, Z = 2; crystals II: a = 7.2446(6) Å, b = 7.4379(6) Å, c = 12.110(1) Å, = 80.95(1)°, = 85.55(1)°, = 86.60(1)°, V = 641.8(2) Å3; crystals III: a = 7.253(2) Å, b = 7.459(4) Å, c = 12.151(5) Å, = 80.82(4)°, = 83.73(3)°, = 86.81(4)°, V = 644.6(9) Å3. The structure of I is composed of CuIICl4 2– tetrahedra and N-allylisoquinolinium cations united by C–H···Cl hydrogen bonds in corrugated layers. The crystal structures of -complexesII and III are built of [C9H7(C3H5)]2Cu2 IX4 dimers, which form layers along the c axis due to the C–H···X hydrogen bonds. An important role in the structure formation is played by water molecules, which crosslink the organometallic layers to form a three-dimensional framework through the O–H···X contacts.  相似文献   
5.
A series of homoleptic complexes of hexacoordinate cobalt(II) and copper(II) complexes with 3,5-disubstituted homo- and heteroscorpionate tris(pyrazolyl)borate anionic ligands (Tp′) were synthesized, i.e. bis[hydrotris(3-phenyl,5-methylpyrazol-1-yl)borato]cobalt(II), bis[hydrobis(3-phenyl,5-methylpyrazol-1-yl)(3-methyl,5-phenylpyrazol-1-yl)borato]cobalt(II) and bis[hydrobis(3-phenyl,5-methylpyrazol-1-yl)(3-methyl,5-phenylpyrazol-1-yl)borato]copper(II) and their structures were elucidated crystallographically. The complexes were also formed spontaneously during attempted metathesis of the corresponding Tp′M(NCS) complexes into Tp′M(OOCCH(OH)CH3) complexes. In the case of the analogous conversion applied for the thiocyanato [hydrobis(3-phenyl,5-methylpyrazol-1-yl)(3,5-dimethylpyrazol-1-yl)boratocobalt(II) complex with sodium carboxylates (lactate, pyruvate and 2-hydroxybutyrate), the cross-transfer of pyrazolyl residues between starting anionic ligands was observed resulting in formation of bis-ligand homo- and heteroleptic Tp′CoTp″ complexes, where Tp′, Tp″ were tris(pyrazolyl)borates composed of n 3(5)-phenyl,5(3)-methylpyrazolyl and (3−n) 3,5-dimethylpyrazolyl residues (n=0–3) identified by mass spectrometry. Metathesis of thiocyanate in thiocyanato hydrotris(3-phenyl,5-methylpyrazol-1-yl)boratocobalt(II) into pyruvate led to the isolation of stable the pyruvato hydrotris(3-phenyl,5-methylpyrazol-1-yl)boratocobalt(II) complex, the structure of which was determined crystallographically. The Tp′ ligands are η3 coordinated to metal ions in every case, whereas the pyruvate anion is coordinated through carboxylate and carbonyl oxygen atoms to the cobalt center. Two rotational isomers distinguishable by 1H NMR spectroscopy for the hexacoordinate bis[hydrobis(3-phenyl,5-methylpyrazol-1-yl)(3-methyl,5-phenylpyrazol-1-yl)borato]cobalt(II) complex were detected in solution.  相似文献   
6.
Comparison of the structures of strychninium N‐phthaloyl‐β‐alaninate N‐phthaloyl‐β‐alanine, C21H23N2O2+·C11H8NO4·C11H9NO4, and brucinium N‐phthaloyl‐β‐alaninate 5.67‐hydrate, C23H27N2O4+·C11H8NO4·5.67H2O, reveals that, unlike strychninium cations, brucinium cations display a tendency to produce stacking inter­actions with cocrystallizing guests.  相似文献   
7.
Abstract

Elimination of one methyl group by excess of N,N-dipropylamine transformed S-(3,4,6-tri-O-acetyl-2-deoxy-α-D-glucopyranosyl)-O,O-dimethyl-dithiophosphate1 into the N,N-dipropylammonium (R)S- (3,4,6-tri-O-acetyl-2-deoxy-α-D-glucopyranosyl)-O-methyl-dithiophosphate with chiral centre on phosphorus atom.  相似文献   
8.
9.
The crystal structures of brucine (2,3‐di­methoxy­strychnidin‐10‐one), C23H26N2O4, brucine acetone solvate, C23H26N2O4·C3H6O, and brucine 2‐propanol solvate dihydrate, C23H26N2O4·C3H7O·2H2O, have been determined. Crystals of brucine and its 2‐propanol solvate dihydrate exhibit similar monolayer sheet packing, whereas crystals of the acetone solvate adopt a different mode of packing, as brucine pillars. The solvent appears to control the brucine self‐assembly on the basis of common donor–acceptor properties of the surfaces.  相似文献   
10.
Abstract

The title compound 3 has been synthesized from 3,4,6-tri-O-acetyl-2-deoxy-2-nitroso-α-D-glucopyranosyl chloride (1) via compound 2. Azide reduction of 3 is accompanied by ON-acetyl migration to afford N-acetyl-N-(3,4,6-tri-O-acetyl-2-deoxy-2-hydroxyimino-β-D-arabino-hexopyranosyl) amine (4), also characterized as its Z and E peracetates. On the basis of IR, 1H NMR and X-ray structural data from compound 4, its β-NHAc configuration, (Z) 2-hydroxyimino, and °S2 conformation, were established.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号