首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
化学   4篇
  2022年   1篇
  2021年   1篇
  2011年   1篇
  2009年   1篇
排序方式: 共有4条查询结果,搜索用时 93 毫秒
1
1.
Disposable electrodes were fabricated by coating chromium (5 nm) and gold (200 nm) on glass strips (5.0 mm×25.4 mm) and used in a label‐free immunosensor. Human serum albumin (HSA) and its antigen (anti‐HSA) were used as a model system. Electropolymerization of o‐phenylenediamine was used for the immobilization of anti‐HSA by covalent binding. A linear relationship was obtained in the range from 1.0×10?14 to 1.0×10?9 M with a limit of detection of 8.0×10?15 M. Each modified electrode can be reused up to 30 times. The developed system was applied for human serum samples and compared to Albumin BCG method.  相似文献   
2.
Detection of ultra-trace amounts of antigens by label-free capacitive immunosensors was investigated using electrodes modified with silver nanoparticles (AgNPs) that allows for an increase in the amount of immobilized antibodies. The optimal amount of AgNPs that provided the highest immobilization yield was 48 pmol (in 2.0 mL). The performances of immunosensor electrodes for human serum albumin prepared with AgNPs, were compared to electrodes prepared with gold nanoparticles. The two systems provided the same linear range (1.0 × 10−18 to 1.0 × 10−10 M) and detection limit (1.0 × 10−18 M). The system with AgNPs was used to analyze albumin in urine samples and the results agreed well with the immunoturbidimetric assay (P > 0.05). Electrodes modified with AgNPs and appropriate antibodies were tested for their performances to detect analytes of different sizes. For a macromolecule (human serum albumin) the incorporation of AgNPs improved the detection limit from 100 to 1 aM. For small molecules, microcystin-LR and penicillin G, the detection limits were lowered from 100 and 10 fM to 10 and 0.7 fM, respectively. The high sensitivity and very low detection limits are potentially useful for the analysis of toxins or residues present in samples at ultra-trace levels and this method could easily be applied to other affinity pairs.  相似文献   
3.
Benzo(a)pyrene (BaP) has been recognized as a marker for the detection of carcinogenic polycyclic aromatic hydrocarbons. In this work, a novel monolithic solid-phase extraction (SPE) sorbent based on graphene oxide nanoparticles (GO) in starch-based cryogel composite (GO-Cry) was successfully prepared for BaP analysis. Rice flour and tapioca starch (gel precursors) were gelatinized in limewater (cross-linker) under alkaline conditions before addition of GO (filler) that can increase the ability to extract BaP up to 2.6-fold. BaP analysis had a linear range of 10 to 1000 µgL−1 with good linearity (R2 = 0.9971) and high sensitivity (4.1 ± 0.1 a.u./(µgL−1)). The limit of detection and limit of quantification were 4.21 ± 0.06 and 14.04 ± 0.19 µgL−1, respectively, with excellent precision (0.17 to 2.45%RSD). The accuracy in terms of recovery from spiked samples was in the range of 84 to 110% with no significant difference to a C18 cartridge. GO-Cry can be reproducibly prepared with 2.8%RSD from 4 lots and can be reused at least 10 times, which not only helps reduce the analysis costs (~0.41USD per analysis), but also reduces the resultant waste to the environment.  相似文献   
4.
The accumulation of polyethylene terephthalate (PET) seriously harms the environment because of its high resistance to degradation. The recent discovery of the bacteria-secreted biodegradation enzyme, PETase, sheds light on PET recycling; however, the degradation efficiency is far from practical use. Here, in silico alanine scanning mutagenesis (ASM) and site-saturation mutagenesis (SSM) were employed to construct the protein sequence space from binding energy of the PETase–PET interaction to identify the number and position of mutation sites and their appropriate side-chain properties that could improve the PETase–PET interaction. The binding mechanisms of the potential PETase variant were investigated through atomistic molecular dynamics simulations. The results show that up to two mutation sites of PETase are preferable for use in protein engineering to enhance the PETase activity, and the proper side chain property depends on the mutation sites. The predicted variants agree well with prior experimental studies. Particularly, the PETase variants with S238C or Q119F could be a potential candidate for improving PETase. Our combination of in silico ASM and SSM could serve as an alternative protocol for protein engineering because of its simplicity and reliability. In addition, our findings could lead to PETase improvement, offering an important contribution towards a sustainable future.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号