首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   38篇
  免费   0篇
  国内免费   2篇
化学   39篇
物理学   1篇
  2022年   1篇
  2020年   1篇
  2019年   1篇
  2018年   2篇
  2017年   2篇
  2016年   4篇
  2015年   4篇
  2014年   1篇
  2013年   1篇
  2012年   2篇
  2010年   4篇
  2009年   2篇
  2007年   6篇
  2006年   4篇
  2005年   3篇
  2004年   2篇
排序方式: 共有40条查询结果,搜索用时 31 毫秒
1.
A multi-wall carbon nanotube (MWNT)/cetyl pyridine bromine (CPB) composite film modified glassy carbon electrode (GCE) was developed for the electrochemical determination of hymecromone in phosphonate buffer. Electrochemical behaviour of hymecromone at the composite film electrode was investigated with voltammetry. Compared with an irreversible oxidation of hymecromone at the bare GCE, the oxidation peak current was enhanced greatly at the film electrode. Some parameters such as pH, scan rate, accumulation potential and accumulation time were optimized. Under optimal conditions, an oxidation peak at 0.82 V was employed to determine hymecromone electrochemically. A linearity between the oxidation peak current and the hymecromone concentration was obtained in the range of 3.0 × 10−7 − 2.0 × 10−5 mol 1−1 with a detection limit of 8.0 × 10−8 mol 1−1. The proposed procedure was successfully applied to assay hymecromone in pharmaceutical formulation with satisfactory results. The text was submitted by the authors in English.  相似文献   
2.
A novel nano-TiO2 polymer modified glassy carbon (GC) electrode was developed for the determination of an organophosphorous pesticide, fenitrothion (-NO2), in citrate buffer solution. The electrochemical behavior of fenitrothion was characterized by using cyclic voltammetry. An irreversible form, -NO2, was transformed into a reversible redox couple (-NHOH/-NO), and it can be used to determine trace fenitrothion by square wave voltammetry. The experimental parameters, such as film thickness, pH value, accumulation potential and time were optimized. Interestingly, a cyclic voltammetric scan was observed to be more effective than a constant potential for the accumulation of fenitrothion. A linear response over a fenitrothion concentration of 2.5×10–8 to 1.0×10–5M was exhibited, with a detection limit of 1.0×10–8M (S/N=3). The high sensitivity and selectivity of this film electrode was demonstrated by its practical application to the determination of trace amounts of fenitrothion in lake water and apple samples.  相似文献   
3.
4.
Gold nanorods (AuNRs) integrated with ZnCdHgSe near-infrared quantum dots (AuNRs-ZnCdHgSe QDs) were successfully synthesized and characterized by transmission electron microscope, X-ray photoelectron spectroscopy, and X-ray diffraction. A glassy carbon electrode was decorated with the aforementioned AuNRs-ZnCdHgSe QDs nanocomposite, which provides a biocompatible interface for the subsequent immobilization of prostate specific antibody (anti-PSA). After being successively treated with glutaraldehyde vapor and bovine serum albumin solution, a photoelectrochemical immunosensing platform based on anti-PSA/AuNRs-ZnCdHgSe QDs/GCE was established. The photocurrent response of ZnCdHgSe QDs was tremendously improved by AuNRs due to the effect of resonance energy transfer which can be deduced from the dependence of the enhanced efficiency on the AuNRs with different length-to-diameter ratios and spectral absorption characteristics. A maximum photocurrent was obtained when the absorption spectrum of AuNRs matched well with the emission spectrum of ZnCdHgSe QDs. A photoelectrochemical immunosensor for prostate specific antigen (PSA) was achieved by monitoring the photocurrent variation. The photocurrent variation before and after being interacted with PSA solution exhibits a good linear relationship with the logarithm of its concentration (logcPSA) in the range from 1.0 pg mL−1 to 50.0 ng mL−1. The detection limit of this photoelectrochemical immunosensor is able to reach 0.1 pg mL−1 (S/N = 3). Determining PSA in clinical human serum was also demonstrated by using the developed anti-PSA(BSA)/AuNRs-ZnCdHgSe QDs/GCE electrode. The results were comparable with those obtained from an enzyme-linked immunosorbent assay method.  相似文献   
5.
Tungsten disulfide (WS2) nanosheets were obtained by exfoliating WS2 bulk crystals in N-methylpyrrolidone by ultrasonication. Gold nanoparticles (GNPs) were synthesized by in-situ ultrasonication of sodium citrate and HAuCl4 while fabricating the WS2 nanosheets. In this way, the GNPs were self-assembled on WS2 nanosheets to form a GNPs/WS2 nanocomposite through interaction between sulfur and gold atoms. The photoelectrochemical response of WS2 nanosheets is significantly enhanced after integration of the GNPs. The GNPs/WS2 nanocomposite was coated onto a glassy carbon electrode (GCE) to construct a sensing interface which then was modified with an antibody against the carcinoembryonic antigen (CEA) to obtain a photoelectrochemical immunosensor for CEA. Under optimized conditions, the decline in relative photocurrent is linearly related to the logarithm of the CEA concentration in the range from 0.001 to 40 ng mL?1. The detection limit is 0.5 pg mL?1 (at S/N =?3). The assay is sensitive, selective, stable and reproducible. It was applied to the determination of CEA in clinical serum samples.
Graphical abstract Schematic presentation of the fabrication of Au/WS2 nanocomposites by in-situ ultrasonication and the procedure for the CEA photoelectrochemical immunosensor preparation, and the photocurrent response towards the carcinoembryonic antigen.
  相似文献   
6.
A novel amperometric sensor and chromatographic detector for determination of parathion has been fabricated from a multi-wall carbon nano-tube (MWCNT)/Nafion film-modified glassy-carbon electrode (GCE). The electrochemical response to parathion at the MWCNT/Nafion film electrode was investigated by cyclic voltammetry and linear sweep voltammetry. The redox current of parathion at the MWCNT/Nafion film electrode was significantly higher than that at the bare GCE, the MWCNT-modified GCE, and the Nafion-modified GCE. The results indicated that the MWCNT/Nafion film had an efficient electrocatalytic effect on the electrochemical response to parathion. The peak current was proportional to the concentration of parathion in the range 5.0×10–9–2.0×10–5 mol L–1. The detection limit was 1.0×10–9 mol L–1 (after 120 s accumulation). In high-performance liquid chromatography with electrochemical detection (HPLC–ED) a stable and sensitive current response was obtained for parathion at the MWCNT/Nafion film electrode. The linear range for parathion was over four orders of magnitude and the detection limit was 6.0×10–9 mol L–1. Application of the method for determination of parathion in rice was satisfactory.  相似文献   
7.
ZnS-polyacrylic acid (ZnS-PAA) was prepared by an in situ polymerization method using nano-ZnS as core in the presence of acrylic acid (AA), and ZnS-PAA nanoparticles was characterized by ultraviolet spectrometry (UV) and transmission electron microscopy (TEM). Based on the significant increase of the resonance light scattering (RLS) intensity with the interaction between nanoparticles and serum albumin, RLS method was developed for the sensitive determination of serum albumin (BSA and HSA). Under optimum conditions, the change of the intensity (ΔI) of the RLS spectra at λ = 392 nm was linearly proportional to the concentration of BSA and HSA. The linear range was 1–100 ng mL?1 for HSA and 1–120 ng mL?1 for BSA, and the limit of detection (LOD) was 0.4 ng mL?1 for HSA and 0.5 ng mL?1 for BSA. This method proved to be very sensitive, rapid, simple and tolerant of most interfering substances.  相似文献   
8.
A novel electrochemical sensor for methyl parathion based on silicate– cetyltrimethylammonium bromide nanocomposite film has been fabricated by electro-assisted deposition onto glassy carbon electrode in one-step via an electrochemical modulation of pH at the electrode/solution interface to promote controlled gelification of tetraethylorthosilicate sol, and was characterized with scanning electron microscopy, X-ray diffraction, and electrochemical impedance spectroscopy. The electrochemical sensing of methyl parathion on the film-modified electrode was investigated applying cyclic voltammetry and square wave voltammetry. Compared to the unmodified electrode, the shapes of the redox peaks were improved and the peak currents significantly increased. Experimental parameters such as deposition time, pH value, and accumulation conditions have been optimized. A linear relationship between the peak current and methyl parathion concentration was obtained in the range from 1.0 × 10−7 to 1.0 × 10−4 mol L−1 with a detection limit of 1.04 × 10 −8 mol L−1 (S/N = 3) after accumulation at 0 V for 120 s. The film electrode shows great promise for determination of methyl parathion in real samples.   相似文献   
9.
Herein, an electrochemical method was developed for the determination of ciprofloxacin based on the enhancement effect of cetyltrimethylammonium bromide (CTAB). In pH 7.0 phosphate buffer, a poorly-defined oxidation peak is observed at carbon paste electrode (CPE) for ciprofloxacin. However, the oxidation peak current remarkably increases in the presence of low concentration of CTAB, suggesting that CTAB exhibits obvious enhancement effect to the determination of ciprofloxacin. All the experimental parameters, such as supporting electrolyte, pH value, concentration of CTAB, and accumulation time, were optimized for ciprofloxacin analysis. This new method possesses high sensitivity (detection limit is 5.0 × 10−8 mol l−1), wide linearity (1.0 × 10−7−2.0 × 10−5 mol l−1), rapid response, low cost and simplicity. Finally, this method was successfully employed to detect ciprofloxacin in drugs. The text was submitted by the authors in English.  相似文献   
10.
The ionic liquid 1-{3-[(2-aminoethyl)amino]propyl}-3-vinylimidazole bromide was synthesized and used to fabricate a molecularly imprinted film for electrochemical sensing of myoglobin (Myo). This film was deposited on a glassy carbon electrode modified with multi-walled carbon nanotubes by using the ionic liquid as the functional monomer, Myo as the template, N,N′-methylenebisacrylamide as the crosslinker, and a redox system containing ammonium persulfate and N,N,N′,N′-tetramethylethylenediamine as the initiator. The sensing performance of the modified electrode was investigated by using the hexacyanoferrate system as an electrochemical redox probe. The results demonstrated that the sensor possesses good selectivity and high sensitivity. The oxidation peak current at the potential of ~0.3 V (vs. SCE) was found linearly related to the myoglobin concentration in the range from 60.0 nM to 6.0 μM, with a 9.7 nM detection limit at an S/N ratio of 3. The sensor was applied to the determination of Myo in spiked serum samples where it showed average recoveries (for n = 5) of 96.5 %.
Graphical abstract By using a polymerizable ionic liquid as the functional monomer, a myoglobin imprinted polymer was fabricated on a multi-walled carbon nanotube modified glassy carbon electrode. The sensing performances of the molecularly imprinted sensor towards myoglobin demonstrated good selectivity, sensitivity and accuracy.
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号