首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31篇
  免费   1篇
  国内免费   6篇
化学   38篇
  2022年   1篇
  2020年   3篇
  2019年   2篇
  2018年   3篇
  2016年   1篇
  2014年   2篇
  2013年   1篇
  2012年   4篇
  2011年   5篇
  2010年   1篇
  2009年   2篇
  2008年   3篇
  2006年   3篇
  2005年   4篇
  2004年   1篇
  1999年   2篇
排序方式: 共有38条查询结果,搜索用时 0 毫秒
1.
We present herein an innovative host–guest method to achieve induced molecular chirality from an achiral stilbazolium dye (DSM). The host–guest system is exquisitely designed by encapsulating the dye molecule in the molecule-sized chiral channel of homochiral lanthanide metal–organic frameworks (P-(+)/M-(−)-TbBTC), in which the P- or M-configuration of the dye is unidirectionally generated via a spatial confinement effect of the MOF and solidified by the dangling water molecules in the channel. Induced chirality of DSM is characterized by solid-state circularly polarized luminescence (CPL) and micro-area polarized emission of DSM@TbTBC, both excited with 514 nm light. A luminescence dissymmetry factor of 10−3 is obtained and the photoluminescence quantum yield (PLQY) of the encapsulated DSM in DSM@TbTBC is ∼10%, which is close to the PLQY value of DSM in dilute dichloromethane. Color-tuning from green to red is achieved, owing to efficient energy transfer (up to 56%) from Ln3+ to the dye. Therefore, this study for the first time exhibits an elegant host–guest system that shows induced strong CPL emission and enables efficient energy transfer from the host chiral Ln-MOF to the achiral guest DSM with the emission color tuned from green to red.

Homochiral Ln-MOFs are synthesized to encapsulate achiral dyes to induce strong circularly polarized luminescence with a luminescence dissymmetry factor of 10−3.  相似文献   
2.
A new star-shaped molecule StOF-Br_3 containing oligofluorenes and halogen atoms(Bromine) has been synthesized and studied by Scanning Tunneling Microscopy(STM) at the highly oriented pyrolytic graphite(HOPG) surface.We have obtained the high-resolution self-assembled STM images,from which the highly ordered and closely packed non-porous arrangements of the StOF-Br_3 molecular selfassemblies at the heptanoic acid/HOPG surface could be observed.The molecular models and selfassembled StOF-Br_3 architectures have been given in the following text.Besides,we have also figured out the surface free energy by the density functional theory(DFT) calculation,which proved that the halogen...halogen interaction was strong enough to stabilize the ordered molecular self-assemblies.This work verifies the existence of bromine...bromine interactions,and meanwhile provides a kind of effective approach for quickly building ordered molecular nanoarchitectures with large areas and different geometries.  相似文献   
3.
Li  Kun  Wu  Yishi  Li  Xuemei  Fu  Hongbing  Zhan  Chuanlang 《中国科学:化学(英文版)》2020,63(4):490-496
Quaternary blended organic solar cells utilize four blended material components(one donor plus three acceptors, two donors and two acceptors, or three donors plus one acceptor) as the active layer materials. The use of four material components allows us to have more material selections and more mechanism choices to improve the photon-to-electron conversion efficiency. In this contribution, we present a new case of quaternary material system, that shows 17.1% efficiency obtained by adding IDIC and PC_(71)BM as the guest acceptors of the host binary of PM6:Y6. The lowest unoccupied molecular orbital(LUMO) levels of IDIC and PC_(71)BM are both higher than that of Y6, which is one reason to obtain increased open-circuit voltage(V_(oc)) in the quaternary device. Upon introduction of IDIC and PC_(71)BM as the acceptor guests, the hole and electron mobilities are both increased, which contributes to the increased short-circuit current-density(J_(sc)). Effects of the weight ratios of the three acceptor components are investigated, which demonstrates that the increased hole and electron mobilities, the accelerated hole-transfer, and the reduced monomolecular recombination are the factors contributing to the increased J_(sc)and fill-factor. This case of quaternary device demonstrates the applicability of the quaternary strategy in increasing the device functions and hence the efficiencies in the field of organic photovoltaic cells.  相似文献   
4.
A single probe has limited brightness in time-domain imaging and such limitation frequently renders individual molecules undetectable in the presence of interference or complex cellular structures. However, a single photoswitchable probe produces a signal, which can be separated from interference or noise using photoswitching-enabled Fourier transformation (PFT). As a result, the light-modulated probes can be made super bright in the frequency domain simply by acquiring more cycles in the time domain.  相似文献   
5.
近年来,设计和合成高性能非富勒烯受体(NFAs)材料已经成为太阳能电池研究领域的前沿课题。基于DA'D型稠环结构的NFAs由于具有吸光系数高、能级和带隙可调、结构易于修饰、分子可高效合成、光电学性能优异等优点而受到了越来越广泛的关注。在短短7年的时间里,能量转换效率(PCE)从3%~4%提高到18%。2019年初邹应萍等报道了一个优秀的受体分子Y6,与PM6共混制备单结电池,获得了15.7%的能量转换效率。Y6类受体材料的中心给电子单元为DA'D型稠环结构,缺电子单元(A')通过氮原子与两个给电子单元(D)并联形成稠环结构,这有助于降低前线分子轨道能级并增强吸收,同时与氮相连的两个烷基链和位于噻吩并噻吩β位的两个侧链则有助于提高溶解度及调节结晶性。自Y6问世以来,人们对分子的结构剪裁进行了深入的研究,并报道了数十种新的结构。在这些新的受体中,DA'D部分的结构裁剪对提高器件效率和太阳能电池的性能起着至关重要的作用。本文对A'、D单元和侧链结构修饰的研究进展进行了综述。通过选择几组受体,对最近报道的分子进行分类,并将它们的光学、电化学、电学和光电性质与精确的结构修饰相关联,从而对结构-性能关系进行全面概述。  相似文献   
6.
The polymer/small-molecule electron donor and nonfullerene organic electron acceptor are of structural similarity with both donor and acceptor molecules consisting of polycyclic fused-ring backbone and being decorated with alkyl-chains.In this study,we report that the introduction of binary fullerenes(C_(60)-/C_(70)-PCBM and C_(60)-/C_(70)-ICBA)into a nonfullerene binary system PBDB-T:ITIC reduces the polymer-nonfullerene acceptor intermixing,obtaining higher crystallinity with(100)crystal coherence length from 28 to 29–33 nm for the ITIC,and from 14 to 20–24 nm for the PBDB-T,and improved electron and hole mobilities both.Unprecedentedly,such a protocol reduces the ITIC optical band gap from 1.59 to 1.55 eV.As consequences,higher short-circuit current-density(17.8–18.4 vs.15.8 m A/cm~2),open-circuit voltage(0.92 vs.0.90 V)and fill-factor(0.72–0.73 vs.0.68)are simultaneously obtained,which ultimately afford higher efficient quaternary polymer solar cells with power conversion efficiencies(PCEs)up to 12.0%–12.8%comparing to the host binary device with 9.9%efficiency.For the polymer,ITIC,and ICBA/PCBM ternary blends,11%PCEs were recorded.The use of PCBM leads to larger red-shifting in thin film absorption and external quantum efficiency(EQE)response.Such effect is more pronounced when ICBA:PCBM mixture is used.These results indicate the size and shape of C_(60)and C_(70)as well as the substituent position of the second indene unit on C_(60)-/C_(70)-ICBA affect not only the blend morphology but also the electronic coupling in BHJ mixtures:the quaternary device performance increased in sequences of C_(70)-PCBM:C_(70)-ICBA→C_(70)-PCBM:C_(60)-ICBA→C_(60)-PCBM:C_(70)-ICBA→C_(60)-PCBM:C_(60)-ICBA.The resonant soft X-ray scattering(RSoXS)data indicated the most refined phase separation in the C_(60)-PCBM:C_(60)-ICBA based blend,corresponding to its best device function among the quaternary devices.These results indicate that the using of binary fullerenes as the acceptor additives allows for tuning nonfullerene blended film’s optical properties and filmmorphologies,shedding light on the designing high-performance multi-acceptor polymer solar cells.  相似文献   
7.
溶致变色法测定类杂芪染料分子-阶超极化率   总被引:3,自引:1,他引:2  
Using solvatochromic method the determination of the molecular first-order hyperpolarizabilities of three novel stilbazolium-like dyes and twoknown stilbazolium-like dyes: trans-(pyrrol-2yl) -4-(N-methyl-pyridinio) -stilbazolium iodide(PPSI), trans-(furan-2-yl) -4-(N-methyl - pyridinio)-stilbazolium iodide (FPSI), trans-(thiophene-2-yl) -4- (N-methyl-pyridinio)-stilbazolium iodide (TPSI) and trans-(N-methylpyrrol-2-yl) 4-(N-methyl-pyridinio)-stilbazolium iodide (MPPSI), trans(4-N, N-dimethylamino) -(4- N-methylpwidinio) -stilbazolium iodide(DAPSI) in 8 solvents is presented, and their molecular hyperpolarizabilities are as high as 10-26 -10-27 esu. We have proved that the molecular hyperpolarizabilities is in linear correlation with the electron excessivities of donors for PPSI,FPSI and TPSI in each solvent, this relation give us a way to design molecules that have larger hyperpolallzabilities. Furthermore, our experiments show that the molecules of the five stilbazolium-like dyes have...更多 a larger dipolemoment, when they are in ground state than in excited state.  相似文献   
8.
Developing novel fused π-conjugated chromophores has been an energetic research realm and knowing how to adjust their photophysical properties and energy levels through structure tailoring is of pivotal importance. Herein, based on the ladder-type π-conjugated indacenodithiophene (IDT) moiety, four B←N embedded IDT structures, namely, BNIDT, BNIDT-2Br, BNIDT-4Br, and BNIDT-6Br are synthesized and fully characterized. The influences of B←N unit embedded in the IDT backbone and Br atoms anchoring at the periphery on the photophysical properties and energy levels are discussed systematically. From IDT to BNIDT, a new intra-molecular charge transfer (ICT) transition band appears at lower energy (400–600?nm) in the absorption spectra with reduced optical bandgaps (Eg) from 3.25?eV to 2.11?eV and the fluorescence emission peaks red-shift from 390?nm to 565?nm along with remarkably extended fluorescence lifetimes from 1.2 ns to 12.4 ns due to the introduction of electron-deficient B←N into the backbone. Further anchoring Br atoms at the periphery of the backbone gives rise to depressed optical bandgaps, decreased fluorescence quantum yields (Φ), and shortened fluorescence lifetimes (τ) from BNIDT (Eg?=?2.11?eV, Φ?=?0.46, τ?=?12.4?ns), BNIDT-2Br (Eg?=?2.08?eV, Φ?=?0.18, τ?=?4.9?ns), BNIDT-4Br (Eg?=?1.67?eV, non-emission) to BNIDT-6Br (Eg?=?1.61?eV, non-emission). The HOMO and LUMO levels estimated from ultraviolet photoelectron spectroscopy (UPS) and optical bandgaps also experience synergetic lowering from IDT to BNIDT-6Br. This work indicates that backbone modification with electron-deficient B←N unit and side groups tailoring with halogen atoms are powerful to manipulate the optical properties and energy levels of fused π-conjugated chromophores.  相似文献   
9.
Tin‐based halide perovskite materials have been successfully employed in lead‐free perovskite solar cells, but the overall power conversion efficiencies (PCEs) have been limited by the high carrier concentration from the facile oxidation of Sn2+ to Sn4+. Now a chemical route is developed for fabrication of high‐quality methylammonium tin iodide perovskite (MASnI3) films: hydrazinium tin iodide (HASnI3) perovskite film is first solution‐deposited using presursors hydrazinium iodide (HAI) and tin iodide (SnI2), and then transformed into MASnI3 via a cation displacement approach. With the two‐step process, a dense and uniform MASnI3 film is obtained with large grain sizes and high crystallization. Detrimental oxidation is suppressed by the hydrazine released from the film during the transformation. With the MASnI3 as light harvester, mesoporous perovskite solar cells were prepared, and a maximum power conversion efficiency (PCE) of 7.13 % is delivered with good reproducibility.  相似文献   
10.
We found that the entering position of the bromination in the bay-region (e.g., 1,6,7,12-positions) was precisely determined by the orientation director(s), either individually or cooperatively. In particular, a combination of two directors shows precisely positioning for the third entering bromo with an effect of ‘1+1>2’.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号