首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   34篇
  免费   2篇
  国内免费   4篇
化学   28篇
力学   5篇
数学   1篇
物理学   6篇
  2023年   1篇
  2021年   2篇
  2020年   2篇
  2019年   1篇
  2016年   2篇
  2015年   2篇
  2013年   4篇
  2012年   4篇
  2011年   6篇
  2008年   1篇
  2007年   2篇
  2006年   2篇
  2005年   2篇
  2004年   2篇
  2000年   2篇
  1999年   1篇
  1998年   1篇
  1993年   1篇
  1992年   1篇
  1989年   1篇
排序方式: 共有40条查询结果,搜索用时 15 毫秒
1.
借助电子动量谱学结合量子化学理论和其他方法可以给出轨道电子在整个空间的分布信息,由此给出电子运动的完备描述[1,2 ] .清华大学电子动量谱学实验室近几年已成功地对甲烷[3] 、异丁烷[4 ] 、环戊烷[5] 、二乙酰等[6 ] 分子的轨道电子动量分布进行了测量.我们利用第二代电子动量谱仪首次对CH2 F2 分子3a1和2b2 轨道的电子动量谱进行测量,并与理论计算结果作了比较.同时还计算了坐标空间和动量空间中电子在x - y平面的密度分布.电子动量谱学最基本的过程是(e ,2e)反应,即电子与靶粒子碰撞而发生的电离过程.而对于(e ,2e)反应,含有大量信…  相似文献   
2.
In this paper, a facile and effective method is introduced to prepare palladium electrocatalysts for the oxidation of ethanol in alkaline media. According to the transmission electron microscopy measurement, the as-prepared Pd nanoparticles with the average particle size of 2.5 nm are evenly deposited on the surface of the multi-wall carbon nanotubes by using 1,3-bis(diphenylphosphino) propane as a special additive. Electrochemical measurements demonstrate that the as-prepared catalyst exhibits good electrocatalytic activity and stability for the electrooxidation of ethanol.  相似文献   
3.
Metal–CO2 batteries have attracted much attention owing to their high energy density and use of greenhouse CO2 waste as the energy source. However, the increasing cost of lithium and the low discharge potential of Na–CO2 batteries create obstacles for practical applications of Li/Na–CO2 batteries. Recently, earth‐abundant potassium ions have attracted considerable interest as fast ionic charge carriers for electrochemical energy storage. Herein, we report the first K–CO2 battery with a carbon‐based metal‐free electrocatalyst. The battery shows a higher theoretical discharge potential (E?=2.48 V) than that of Na–CO2 batteries (E?=2.35 V) and can operate for more than 250 cycles (1500 h) with a cutoff capacity of 300 mA h g?1. Combined DFT calculations and experimental observations revealed a reaction mechanism involving the reversible formation and decomposition of P121/c1‐type K2CO3 at the efficient carbon‐based catalyst.  相似文献   
4.
5.
给出了弹性系统瞬时势能泛函的一般表达式,得到了其关于任意挠曲输液管道的具体表达式,根据瞬时最小势能原理建立了该结构的有限元动力方程,并首次推导出其离心力载荷公式,讨论了管道结构静平衡位置的发散流速的确定,最后,用简单的实验结果对理论分析作了验证。  相似文献   
6.
Ca0.6La0.267TiO3 nanocrystalline powders were successfully synthesized by the sol–gel method using PEG1000 as a dispersant in this study. The sinterability of the powders and the microwave dielectric properties of the ceramics were also investigated. The XRD diffraction result showed that pure Ca0.6La0.267TiO3 powder with orthorhombic perovskite structure could be synthesized at 600 °C for 2 h without any detectable intermediate phase. The average grain size of the as-synthesized powder was as low as 35 nm. Compared with Ca0.6La0.267TiO3 ceramics fabricated by conventional solid-state process, the bulk materials prepared by sintering as-prepared nanopowders performed better in densification and microwave dielectric properties. The ceramics sintered at 1,300 °C exhibited a higher relative density of 98.3% combined with a dielectric constant (ε r ) of 120.3, a quality factor (Q × f) of 23,550 GHz and a temperature coefficient of resonant frequency (τ f ) of +220.7 ppm/°C, respectively.  相似文献   
7.
Oxygen reduction reaction (ORR) is vital for clean and renewable energy technologies, which require no fossil fuel but catalysts. Platinum (Pt) is the best-known catalyst for ORR. However, its high cost and scarcity have severely hindered renewable energy devices (e.g., fuel cells) for large-scale applications. Recent breakthroughs in carbon-based metal-free electrochemical catalysts (C-MFECs) show great potential for earth-abundant carbon materials as low-cost metal-free electrocatalysts towards ORR in acidic media. This article provides a focused, but critical review on C-MFECs for ORR in acidic media with an emphasis on advances in the structure design and synthesis, fundamental understanding of the structure-property relationship and electrocatalytic mechanisms, and their applications in proton exchange membrane fuel cells. Current challenges and future perspectives in this emerging field are also discussed.  相似文献   
8.
9.
In this study, N,P co‐doped graphene (NPG) was prepared by a one‐step pyrolysis using a mixture of graphene oxide and hexachlorocyclotriphosphazene (HCCP), in which HCCP was used as both the N and P source. Furthermore, it is shown that NPG electrodes, as efficient metal‐free electrocatalysts, have a high onset potential, high current density, and long‐term stability for the oxygen reduction reaction.  相似文献   
10.
To maximize the utilization of catalysts and thereby reduce the high price, a new strategy was developed to prepare highly dispersed Pt-SnOx nanoparticles supported on 8-Hydroxyquinoline (HQ) functionalized multi-walled carbon nanotubes (MWCNTs). HQ functionalized MWCNTs (HQ-MWCNTs) provide an ideal support for improving the utilization of platinum-based catalysts, and the introduction of SnOx to the catalyst prevents the CO poisoning effectively. The as-prepared catalysts are characterized by Transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy. It is found that the HQ functionalization process preserves the integrity and electronic structure of MWCNTs, and the resulting Pt-SnOx particles are well dispersed on the HQ-MWCNTs with an average diameter of ca. 2.2 nm. Based on the electrochemical properties characterized by cyclic voltammetry and chronoamperometry, the Pt-SnOx/HQ-MWCNTs catalyst displays better electrocatalytic activity and stability for the methanol oxidation. It is worth mentioning that the forward peak current density of Pt-SnOx/HQ-MWCNTs catalyst is ca. 1.9 times of that of JM commercial 20% Pt/C catalyst, which makes it the preferable catalyst for direct methanol fuel cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号