首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   106篇
  免费   11篇
化学   108篇
力学   1篇
数学   4篇
物理学   4篇
  2023年   1篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2018年   6篇
  2016年   3篇
  2015年   6篇
  2014年   5篇
  2013年   10篇
  2012年   8篇
  2011年   7篇
  2010年   5篇
  2009年   3篇
  2008年   5篇
  2007年   6篇
  2006年   10篇
  2005年   8篇
  2004年   10篇
  2003年   4篇
  2002年   4篇
  2000年   1篇
  1994年   1篇
  1992年   1篇
  1990年   2篇
  1989年   1篇
  1985年   2篇
  1984年   1篇
  1982年   2篇
  1980年   1篇
  1973年   1篇
排序方式: 共有117条查询结果,搜索用时 15 毫秒
1.
The convenient method for the synthesis of 1,3-oxathiolan-2-ones by the reaction of epoxides with elemental sulfur and carbon monoxide in the presence of catalytic amount of sodium hydride has been developed.  相似文献   
2.
Fourteen isomers of chemically unmodified hexadecenol were analysed by two types of quadrupole mass spectrometer, coupled with a gas chromatograph, for the location of the double-bond position. A series of spectra were interpreted in terms of mass spectral patterns on a fuzzy classification, in which the intensity ratios of six diagnostic pairs of the predominant ions were preferred in devising similarity indices. The accuracy of the method in the location of double-bond position was confirmed by testing with other series of spectra.  相似文献   
3.
Antileukemic benzo[C]phenanthridine alkaloids, fagaronine (1a) and nitidine (1c) were synthesized from the corresponding protoberberines through C6-N bond fission and subsequent cyclization between C6 and C13 position of the protoberberines.  相似文献   
4.
[reaction: see text] Rhodium(I)-catalyzed PKR of allenynes was found to be applicable for constructing azabicyclo[5.3.0]decadienone as well as oxabicyclo[5.3.0]decadienone frameworks. In addition, a reliable procedure for constructing a 10-monosubstituted bicyclo[5.3.0]deca-1,7-dien-9-one ring system by the rhodium(I)-catalyzed PKR of allenynes was developed under the condition of 10 atm of CO. Investigation of the rhodium(I)-catalyzed cycloisomerization of 4-phenylsulfonylnona-2,3-dien-8-ynes under nitrogen atmosphere gave the corresponding cyclohexene derivatives, whereas the C1-homologated allenynes produced cycloheptene derivatives and/or bicyclo[5.2.0]nonene skeletons depending on the substitution pattern at the allenic terminus. Thus, proper choice of the starting allenynes and reaction conditions led to the selective formation of 2-phenylsulfonylbicyclo[5.3.0]deca-1,7-dien-9-ones (Pauson-Khand-type product), 3-alkylidene-1-phenylsulfonyl-2-vinylcycloheptene derivatives, and bicyclo[5.2.0]nonene frameworks.  相似文献   
5.
6.
In order to reinforce the composite consisting of isoprene rubber (IR) and calcium carbonate (CaCO3) particles, the surface treatment of CaCO3 particles with a mixture of amino- and mercapto-functional silane coupling agents was investigated. The quantity of chemisorbed silanes in treated CaCO3 measured using thermogravimetry was greater for amino- than for mercapto-silane and for the tri- than for the dialkoxy structure. Second, the molecular mobility of polycondensate of the mixtures with the trialkoxy structure measured using 1H pulse nuclear magnetic resonance had the least molecular mobility, i.e., formed the highest density network. The greater values of stress at 500% strain, fracture stress, and elongation at break were determined for the treatment with amino- and mercapto-functional silanes having a trialkoxy structure from the stress-strain curves of composite. The mixture treatment with dialkoxy structure and with amino- or mercapto-functional silane only did not improve the mechanical properties sufficiently. Interactions between the amino group and the CaCO3 surface, covalent bonding between the mercapto group and the IR, and high density network formation of trialkoxy silane were important for improving the mechanical properties of the composite.  相似文献   
7.
8.
9.
In a mixed‐valence polyoxometalate, electrons are usually delocalized within the cluster anion because of low level of inter‐cluster interaction. Herein, we report the structure and electrical properties of a single crystal in which mixed‐valence polyoxometalates were electrically wired by cationic π‐molecules of tetrathiafulvalene substituted with pyridinium. Electron‐transport characteristics are suggested to represent electron hopping through strong interactions between cluster and cationic π‐molecules.  相似文献   
10.
The pyrolytic highly oriented graphite polymer film (PGS) was first employed to analyze low‐mass analytes in environmental analysis by surface‐assisted laser desorption/ionization mass spectrometry (SALDI‐MS). PGS is a synthetic uniform and highly oriented graphite polymer film with high thermal anisotropic conductivity. We have found that negative ion mode SALDI‐MS using oxidized PGS (PGS‐SALDI‐MS) can be used to detect [M–H]? ions from perfluorooctanoic acid (PFOA) and other perfluoroalkylcarboxylic acids when the PGS surface is modified with the cationic polymer polyethyleneimine (PEI). The signal intensity of PFOA when employing the PEI modification showed a ten‐fold increase over that obtained from desorption/ionization on porous silicon (DIOS). PFOA was quantified using PGS‐SALDI‐MS and the calibration curve showed a wide linear dynamic range of response (20–1000 ppb). The combination of atmospheric pressure ionization and PGS (AP‐PGS‐SALDI) showed greater signal intensity than vacuum PGS‐SALDI for deprotonated PFOA. Several other environmentally important chemicals, including perfluoroalkylsulfonic acid, pentachlorophenol, bisphenol A, 4‐hydroxy‐2‐chlorobiphenyl, and benzo[a]pyrene, were also successfully used to evaluate PGS‐SALDI‐MS. In addition, we found that nonafluoro‐1‐butanesulfonic acid was able to produce protonated peptides in positive ion PGS‐SALDI‐MS, but that perfluoropentanoic acid and trifluoroacetic acid were not. It is suggested that perfluoroalkylsulfonic acids are better protonating agents than perfluoroalkylcarboxylic acids in SALDI‐MS. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号