首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   34篇
  免费   0篇
化学   13篇
数学   2篇
物理学   19篇
  2013年   1篇
  2011年   3篇
  2010年   1篇
  2008年   1篇
  2007年   4篇
  2006年   3篇
  2004年   1篇
  2001年   1篇
  1999年   2篇
  1998年   2篇
  1996年   1篇
  1994年   1篇
  1993年   2篇
  1992年   1篇
  1990年   1篇
  1983年   1篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1977年   2篇
  1976年   2篇
  1975年   1篇
排序方式: 共有34条查询结果,搜索用时 15 毫秒
1.
It is shown that the rigid band model cannot be applied to the sodium tungsten bronzes outside of the cubic range. The origin of the band gap states observed in the semiconducting range is discussed.  相似文献   
2.
Direct grafting of organic monolayers on Si is of prime interest in order to give specific properties to a silicon surface. However, for microelectronics applications, this possibility is hampered by the limited stability of the grafted layers. It has been previously established that alkyl layers attached to Si surfaces through Si-C bonds become unstable at 250-300 °C, by desorption of alkenes. Changing the nature of the bonding to the surface might allow one to circumvent this desorption pathway and increase the layer stability. In our work, decanol and decyl aldehyde are reacted with the Si(1 1 1)-H surface at ∼100 °C during 20 h in order to obtain alkoxy monolayers. FTIR measurements performed in ATR geometry show that the grafted molecule surface coverage is on the order of 33% after reaction with decanol and 50% after reaction with decyl aldehyde. Characterization by AFM essentially reveals that the morphology of the grafted surfaces is unaffected as compared to that of Si-H surfaces. However, the edges of the terraces at alcohol-grafted surfaces exhibit some pitting, probably due to the presence of water in the grafting liquid. Thermal stability studies show that alkoxy chains progressively disappear from the Si surface between 200 and 400 °C. From the CH2/CH3 ratio in the CH region (2760-3070 cm−1), it appears that the chains undergo progressive dissociation by C-C bond breaking before their complete disappearance from the surface. Therefore, the thermal behaviour of alkoxy monolayers appears quite distinct from that of alkyl monolayers that tend to leave the surface in a much narrower temperature range (250-350 °C), essentially via breaking of the Si-C bonds.  相似文献   
3.
We have investigated the temperature dependence of photoluminescence in hydrogenated amorphous silicon-carbon alloys a-Si1-xCx:H prepared by glow discharge in the low-power regime. The radiative recombination process, due to photocarriers trapped on band-edge states, is in competition with the thermal escape of the photocarriers into the mobility bands. The model gives a quantitative fit with experiment, without any adjustable parameter, provided the width of the band-edge distribution of states is taken as the width of the conduction band only (measured by “photo-induced infra-red spectroscopy”) and not as the Urbach energy, as it is usually assumed.  相似文献   
4.
Porous silicon layers were elaborated by anodization of highly resistive p-type silicon in HF/ethylene glycol solution under front side illumination, as a function of etching time, HF concentration and illumination intensity. The porous layer morphology was investigated by scanning electron microscopy (SEM). The illumination during anodization was provided by a tungsten lamp or lasers of different wavelengths. Under anodization, a microporous layer is formed up to a critical thickness above which macropores appear. Under illumination, the instability limiting the growth of the microporous layer occurs at a critical thickness much larger than in the dark. This critical thickness depends on HF concentration, illumination wavelength and intensity. These non-trivial dependencies are rationalized in a model in which photochemical etching in the electrochemically formed porous layer plays the central role.  相似文献   
5.
6.
7.
This work demonstrates that well-defined mixed carboxyl-terminated/methyl-terminated alkyl monolayers can be prepared in one step on H-terminated Si(111) via direct photochemical hydrosilylation of undecylenic acid and 1-decene mixtures. As evidenced by AFM imaging and IR spectroscopy, a final rinse in hot acetic acid leaves the functionalized surface atomically smooth and perfectly free of physisorbed contaminants while unwanted material remains atop the monolayer with most other common solvents. The compositional surface chemistry was determined from a truly quantitative IR (ATR geometry) study in the range of 900-4000 cm(-)(1). Results prove that neither surface oxidation nor grafting through the carboxyl end groups occurs. Monolayers are fairly dense for such bulky end groups, with a total molecular surface density of approximately 2.7 10(14) cm(-)(2) corresponding to a surface coverage of 0.35 (maximum theoretical value approximately 0.5). Careful analysis of the CH- and COOH-related IR bands reveals that the composition of the grafted layers is richer in acid chains than the starting grafting mixture. A simple model is presented that shows that the grafting kinetics is about twice as fast for undecylenic acid as for 1-decene. Complementary electrochemical impedance measurements indicate the excellent electronic properties of the interface with a very low density of gap states. They also show that the acid terminal groups promote the penetration of water in the outer part of the organic film.  相似文献   
8.
9.
The use of an amorphous silicon-carbon alloy overcoating on silver nanostructures in a localized surface plasmon resonance (LSPR) sensing platform allows for decreasing the detection limit by an order of magnitude as compared to sensors based on gold nanostructures deposited on glass. In addition, silver based multilayer structures show a distinct plasmonic behaviour as compared to gold based nanostructures, which provides the sensor with an increased short-range sensitivity and a decreased long-range sensitivity.  相似文献   
10.
Polubarinova-Kochina's analytical differential equation methodis used to determine the pseudo-steady-state solution to problemsinvolving the freezing (solidification) of wedges of liquidwhich are initially at their fusion temperature. In particular,we consider four distinct problems for wedges which are: freezingwith the same constant boundary temperature, freezing with thesame constant boundary heat fluxes, freezing with distinct constantboundary temperatures and freezing with distinct constant fluxesat the boundaries. For the last two problems, a Heun's differentialequation with an unknown singularity is derived, which in bothcases admits a particularly elegant simple solution for thespecial case when the wedge angle is . The moving boundariesobtained are shown pictorially.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号