首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
化学   3篇
  2022年   1篇
  2012年   1篇
  2011年   1篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
Recently, we have demonstrated that DNA hybridization using acoustic streaming induced by two piezoelectric transducers provides higher DNA hybridization efficiency than the conventional method. In this work, we refine acoustic streaming system for DNA hybridization by inserting an additional piezoelectric transducer and redesigning the locations of the transducers. The Comsol? Multiphysics was used to design and simulate the velocity field generated by the piezoelectric agitation. The simulated velocity vector followed a spiral vortex flow field with an average direction outward from the center of the transducers. These vortices caused the lower signal intensity in the middle of the microarray for the two-piezoelectric disk design. On the contrary, the problem almost disappeared in the three-piezoelectric-disk system. The optimum condition for controlling the piezoelectric was obtained from the dye experiments with different activation settings for the transducers. The best setting was to activate the side disks and middle disk alternatively with 1 second activating time and 3 second non-activating time for both sets of transducers. DNA hybridization using microarrays for the malaria parasite Plasmodium falciparum from the optimized process yielded a three-fold enhancement of the signal compared to the conventional method. Moreover, a greater number of spots passed quality control in the optimized device, which could greatly improve biological interpretation of DNA hybridization data.  相似文献   
2.
In conventional DNA microarray hybridization, delivery of target cDNAs to surface-bounded probes depends solely on diffusion, which is notoriously slow, and thus typically requires 6-20 h to complete. In this study, piezoelectric microagitation through a liquid coupling medium is employed to enhance DNA hybridization efficiency and the results are compared with the standard static hybridization method. DNA hybridization was performed in a sealed aluminium chamber containing DNA microarray glass chip, coupling medium and piezoelectric transducers. 3×SSC (Saline Sodium Citrate) was used as a coupling medium to prevent overheating of the piezoelectric transducers and to effectively transmit ultrasonic wave to the glass chip. Flow visualization using fluidic dye and velocimetry (PTV) technique was applied to observe fluid transport in the hybridization chamber. It was revealed that the dye solution was homogeneously distributed within 10 min under dynamic agitation while it took over 1 h to reach the same level of homogeneity in static condition. Plasmodium falciparum DNA microarrays and total RNA extracted from parasite cells were used as a model for DNA microarray experiments. It was found that the required hybridization time may be substantially reduced from 16 h to 4 h by the use of dynamic hybridization scheme. With the same hybridization time of 16 h, dynamic hybridization resulted in higher fluorescent signals of ~33% and ~24% compared to static hybridization in Cy3 and Cy5 channels, respectively. Additionally, good/effective spots, some of which were not formed by static method, were enhanced and distributed more uniformly over the microarray. Therefore, the developed dynamic hybridization with integrated piezoelectric microagitation platform is highly promising for DNA analysis in molecular biology and medical applications.  相似文献   
3.
The treatment of a variety of protozoal infections, in particular those causing disabling human diseases, is still hampered by a lack of drugs or increasing resistance to registered drugs. However, in recent years, remarkable progress has been achieved to combat neglected tropical diseases by sequencing the parasites’ genomes or the validation of new targets in the parasites by novel genetic manipulation techniques, leading to loss of function. The novel amino acid hypusine is a posttranslational modification (PTM) that occurs in eukaryotic initiation factor 5A (EIF5A) at a specific lysine residue. This modification occurs by two steps catalyzed by deoxyhypusine synthase (dhs) and deoxyhypusine hydroxylase (DOHH) enzymes. dhs from Plasmodium has been validated as a druggable target by small molecules and reverse genetics. Recently, the synthesis of a series of human dhs inhibitors led to 6-bromo-N-(1H-indol-4yl)-1-benzothiophene-2-carboxamide, a potent allosteric inhibitor with an IC50 value of 0.062 µM. We investigated this allosteric dhs inhibitor in Plasmodium. In vitro P. falciparum growth assays showed weak inhibition activity, with IC50 values of 46.1 µM for the Dd2 strain and 51.5 µM for the 3D7 strain, respectively. The antimalarial activity could not be attributed to the targeting of the Pfdhs gene, as shown by chemogenomic profiling with transgenically modified P. falciparum lines. Moreover, in dose-dependent enzymatic assays with purified recombinant P. falciparum dhs protein, only 45% inhibition was observed at an inhibitor dose of 0.4 µM. These data are in agreement with a homology-modeled Pfdhs, suggesting significant structural differences in the allosteric site between the human and parasite enzymes. Virtual screening of the allosteric database identified candidate ligand binding to novel binding pockets identified in P. falciparum dhs, which might foster the development of parasite-specific inhibitors.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号