首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   57篇
  免费   3篇
  国内免费   2篇
化学   50篇
力学   1篇
数学   2篇
物理学   9篇
  2023年   1篇
  2022年   2篇
  2021年   8篇
  2020年   7篇
  2019年   5篇
  2018年   3篇
  2017年   3篇
  2016年   2篇
  2015年   1篇
  2014年   4篇
  2013年   1篇
  2011年   1篇
  2010年   3篇
  2009年   5篇
  2008年   3篇
  2007年   1篇
  2006年   1篇
  2005年   3篇
  2004年   1篇
  1999年   1篇
  1997年   3篇
  1996年   2篇
  1995年   1篇
排序方式: 共有62条查询结果,搜索用时 15 毫秒
1.
酞菁钴液相催化氧化羰基硫(COS)的研究   总被引:1,自引:0,他引:1  
本文首次报道在液相中,用金属酞菁催化氧化脱除羰基硫(COS)。发现COS先被水解成HS~-,HS~-再被氧化成S,酞菁钴(CoPC)的活性高于其它金属酞菁(MPC),酞菁苯环上推电子基因使酞菁的催化活性提高,双核酞菁钴的活性高子单核酞菁钴。D296树脂负载的酞菁钴的催化活性高于均相酞菁钴的活性。  相似文献   
2.
Enhanced and selective removal of mercury ions was achieved with chitosan beads grafted with polyacrylamide (chitosan-g-polyacrylamide) via surface-initiated atom transfer radical polymerization (ATRP). The chitosan-g-polyacrylamide beads were found to have significantly greater adsorption capacities and faster adsorption kinetics for mercury ions than the chitosan beads. At pH 4 and with initial mercury concentrations of 10-200 mg/L, the chitosan-g-polyacrylamide beads can achieve a maximum adsorption capacity of up to 322.6 mg/g (in comparison with 181.8 mg/g for the chitosan beads) and displayed a short adsorption equilibrium time of less than 60 min (compared to more than 15 h for the chitosan beads). Coadsorption experiments with both mercury and lead ions showed that the chitosan-g-polyacrylamide beads had excellent selectivity in the adsorption of mercury ions over lead ions at pH < 6, in contrast to the chitosan beads, which did not show clear selectivity for either of the two metal species. Mechanism study suggested that the enhanced mercury adsorption was due to the many amide groups grafted onto the surfaces of the beads, and the selectivity in mercury adsorption can be attributed to the ability of mercury ions to form covalent bonds with the amide. It was found that adsorbed mercury ions on the chitosan-g-polyacrylamide beads can be effectively desorbed in a perchloric acid solution, and the regenerated beads can be reused almost without any loss of adsorption capacity.  相似文献   
3.
Journal of Thermal Analysis and Calorimetry - In this paper, a three-dimensional simulation has been performed to investigate the potential consequences of flammable vapor explosion in a tunnel...  相似文献   
4.
An efficient rhodium(III)‐catalyzed synthesis of 2H‐chromene from N‐phenoxyacetamides and cyclopropenes has been developed. The reaction represents the first example of using cyclopropenes as a three‐carbon unit in rhodium(III)‐catalyzed C(sp2)? H activations.  相似文献   
5.
Sn-doped TiO_2 nanoparticles with high surface area of 125.7 m~2·g~(-1) are synthesized via a simple one-step hydrothermai method and explored as the cathode catalyst support for proton exchange membrane fuel cells.The synthesized support materials are studied by X-ray diffraction analysis,energy dispersive X-ray spectroscopy and transmission electron microscopy.It is found that the conductivity has been greatly improved by the addition of 30 mol%Sn and Pt nanoparticles are well dispersed on Ti_(0.7)Sn_(0.3)O_2 support with an average size of 2.44 run.Electrochemical studies show that the Ti_(0.7)Sn_(0.3)O_2 nanoparticles have excellent electrochemical stability under a high potential compared to Vulcan XC-72.The as-synthesized Pt/Ti_(0.7)Sn_(0.3)O_2 exhibits high and stable electrocatalytic activity for the oxygen reduction reaction.The Pt/Ti_(0.7)Sn_(0.3)O_2 catalyst reserves most of its electrochemically active surface area(ECA),and its half wave potential difference is 11 mV,which is lower than that of Pt/XC-72(36 mV) under 10 h potential hold at 1.4 V vs.NHE.In addition,the ECA degradation of Pt/Ti_(0.7)Sn_(0.3)O_2is 1.9 times lower than commercial Pt/XC-72 under 500 potential cycles between 0.6 V and 1.2 V vs.NHE.Therefore,the as synthesized Pt/Ti_(0.7)Sn_(0.3)O_2 can be considered as a promising alternative cathode,catalyst for proton exchange membrane fuel cells.  相似文献   
6.
With increased computational ability of modern computers, the rapid development of mathematical algorithms and the continuous establishment of material databases, artificial intelligence (AI) has shown tremendous potential in chemistry. Machine learning (ML), as one of the most important branches of AI, plays an important role in accelerating the discovery and design of key materials for flow batteries (FBs), and the optimization of FB systems. In this perspective, we first provide a fundamental understanding of the workflow of ML in FBs. Moreover, recent progress on applications of the state-of-art ML in both organic FBs and vanadium FBs are discussed. Finally, the challenges and future directions of ML research in FBs are proposed.

A fundamental workflow of ML in flow batteries and recent progress of the state-of-art ML applications in both organic FBs and vanadium FBs are discussed. The challenges and future directions of ML research in FBs are proposed.  相似文献   
7.
Nonaqueous redox-flow batteries are an emerging energy storage technology for grid storage systems, but the development of anolytes has lagged far behind that of catholytes due to the major limitations of the redox species, which exhibit relatively low solubility and inadequate redox potentials. Herein, an aluminum-based deep-eutectic-solvent is investigated as an anolyte for redox-flow batteries. The aluminum-based deep-eutectic solvent demonstrated a significantly enhanced concentration of circa 3.2 m in the anolyte and a relatively low redox potential of 2.2 V vs. Li+/Li. The electrochemical measurements highlight that a reversible volumetric capacity of 145 Ah L−1 and an energy density of 189 Wh L−1 or 165 Wh kg−1 have been achieved when coupled with a I3/I catholyte. The prototype cell has also been extended to the use of a Br2-based catholyte, exhibiting a higher cell voltage with a theoretical energy density of over 200 Wh L−1. The synergy of highly abundant, dendrite-free, multi-electron-reaction aluminum anodes and environmentally benign deep-eutectic-solvent anolytes reveals great potential towards cost-effective, sustainable redox-flow batteries.  相似文献   
8.
One promising candidate for high‐energy storage systems is the nonaqueous redox flow battery (NARFB). However, their application is limited by low solubility of redox‐active materials and poor performance at high current density. Reported here is a new strategy, a biredox eutectic, as the sole electrolyte for NARFB to achieve a significantly higher concentration of redox‐active materials and enhance the cell performance. Without other auxiliary solvents, the biredox eutectic electrolyte is formed directly by the molecular interactions between two different redox‐active molecules. Such a unique electrolyte possesses high concentration with low viscosity (3.5 m , for N‐butylphthalimide and 1,1‐dimethylferrocene system) and a relatively high working voltage of 1.8 V, enabling high capacity and energy density of NARFB. The resulting high‐performance NARFB demonstrates that the biredox eutectic based strategy is potentially promising for low‐cost and high‐energy storage systems.  相似文献   
9.
Two dinuclear Fe(III) metal–organic complexes with tetracarboxylate and chelating N-donor ligands, [Fe(Hbtec)(phen)(H2O)]2·2H2O (1) and [Fe(Hbtec)(bpy)(H2O)]2·2H2O (2) (H4btec = 1,2,3,5-benzenetetracarboxylic acid, phen = 1,10-phenanthroline, bpy = 2,2′-bipyridine) have been prepared and characterized by elemental analysis, IR spectroscopic, and X-ray diffraction methods. Both complexes crystallize in the monoclinic space group P21/c with two Fe(III) ions bridged by two Hbtec3? ligands into a dinuclear unit. Hydrogen bonding connects the dinuclear units into a 3-D framework. The dinuclear units are 10-connected nodes that produce a 3-D framework with topology Schläfli symbol as (312·428·55). Thermal stabilities and luminescent properties of the two complexes have also been investigated.  相似文献   
10.
Quercetin-iron (II) complex was synthesized and characterized by elemental analysis, ultraviolet-visible spectrophotometry, fourier transform infrared spectroscopy, mass spectrometry, proton nuclear magnetic resonance spectroscopy, thermogravimetry and differential scanning calorimetry, scanning electron micrography and molar conductivity. The low molar conductivity value investigates the non-electrolyte nature of the complex. The elemental analysis and other physical and spectroscopic methods reveal the 1:2 stoichiometric ratio (metal:ligand) of the complex. Antioxidant study of the quercetin and its metal complex against 2, 2-di-phenyl-1-picryl hydrazyl radical showed that the complex has much more radical scavenging activity than free quercetin. The interaction of quercetin-iron (II) complex with DNA was determined using ultraviolet visible spectra, fluorescence spectra and agarose gel electrophoresis. The results showed that quercetin-iron (II) complex can intercalate moderately with DNA, quench a strong intercalator ethidium bromide and compete for the intercalative binding sites. The complex showed significant cleavage of pBR 322 DNA from supercoiled form to nicked circular form and these cleavage effects were dose-dependent. Moreover, the mechanism of DNA cleavage indicated that it was an oxidative cleavage pathway. These results revealed the potential nuclease activity of complex to cleave DNA. In addition, antibacterial activity of complex on E.coli and S. aureus was also investigated. The results showed that complex has higher antibacterial activity than ligand.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号